首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diphosphaazide complex (Mes*NPP)Nb(N[Np]Ar)3 (Mes* = 2,4,6-tri-tert-butylphenyl, Np = neopentyl, Ar = 3,5-Me2C6H3), 1, has previously been reported to lose the P2 unit upon gentle heating, to form (Mes*N)Nb(N[Np]Ar)3, 2. The first-order activation parameters for this process have been estimated here using an Eyring analysis to have the values Delta H(double dagger) = 19.6(2) kcal/mol and Delta S(double dagger) = -14.2(5) eu. The eliminated P2 unit can be transferred to the terminal phosphide complexes P[triple bond]M(N[(i)Pr]Ar)3, 3-M (M = Mo, W), and [P[triple bond]Nb(N[Np]Ar)3](-), 3-Nb, to give the cyclo-P3 complexes (P3)M(N[(i)Pr]Ar)3 and [(P3)Nb(N[Np]Ar)3](-). These reactions represent the formal addition of a P[triple bond]P triple bond across a M[triple bond]P triple bond and are the first efficient transfers of the P2 unit to substrates present in stoichiometric quantities. The related complex (OC)5W(Mes*NPP)Nb(N[Np]Ar)3, 1-W(CO)5, was used to transfer the (P2)W(CO)5 unit in an analogous manner to the substrates 3-M (M = Mo, W, Nb) as well as to [(OC)5WP[triple bond]Nb(N[Np]Ar)3](-). The rate constants for the fragmentation of 1 and 1-W(CO)5 were unchanged in the presence of the terminal phosphide 3-Mo, supporting the hypothesis that molecular P2 and (P2)W(CO)5, respectively, are reactive intermediates. In a reaction related to the combination of P[triple bond]P and M[triple bond]P triple bonds, the phosphaalkyne AdC[triple bond]P (Ad = 1-adamantyl) was observed to react with 3-Mo to generate the cyclo-CP2 complex (AdCP2)Mo(N[(i)Pr]Ar)3. Reactions of the electrophiles Ph3SnCl, Mes*NPCl, and AdC(O)Cl with the anionic, nucleophilic complexes [(OC)5W(P3)Nb(N[Np]Ar)3](-) and [{(OC)5W}2(P3)Nb(N[Np]Ar)3](-) yielded coordinated eta(2)-triphosphirene ligands. The Mes*NPW(CO)5 group of one such product engages in a fluxional ring-migration process, according to NMR spectroscopic data. The structures of (OC)5W(P3)W(N[(i)Pr]Ar)3, [(Et2O)Na][{(OC)5W}2(P3)Nb(N[Np]Ar)3], (AdCP2)Mo(N[(i)Pr]Ar)3, (OC)5W(Ph3SnP3)Nb(N[Np]Ar)3, Mes*NP(W(CO)5)P3Nb(N[Np]Ar)3, and {(OC)5W}2AdC(O)P3Nb(N[Np]Ar)3, as determined by X-ray crystallography, are discussed in detail.  相似文献   

2.
1-Adamantyl- and mesitylazide react with [(dtbpe)Ni]2(eta2-mu-C6H6) to give the eta2 organic azide adducts (dtbpe)Ni(eta2-N3R) (R = Ad, 3a; Mes, 3b) that have been isolated in good yields and crystallographically characterized. These azide adducts are intermediates in the formation of the corresponding terminal imido complexes (dtbpe)NiNR (R = Ad, 4a; Mes, 4b), undergoing intramolecular loss of dinitrogen upon mild thermolysis.  相似文献   

3.
The mononuclear N‐heterocyclic carbene (NHC) copper alkoxide complexes [(6‐NHC)CuOtBu] (6‐NHC=6‐MesDAC ( 1 ), 6‐Mes ( 2 )) have been prepared by addition of the free carbenes to the tetrameric tert‐butoxide precursor [Cu(OtBu)]4, or by protonolysis of [(6‐NHC)CuMes] (6‐NHC=6‐MesDAC ( 3 ), 6‐Mes ( 4 )) with tBuOH. In contrast to the relatively stable diaminocarbene complex 2 , the diamidocarbene derivative 1 proved susceptible to both thermal and hydrolytic ring‐opening reactions, the latter affording [(6‐MesDAC)Cu(OC(O)CMe2C(O)N(H)Mes)(CNMes)] ( 6 ). The intermediacy of [(6‐MesDAC)Cu(OH)] in this reaction was supported by the generation of Cu2O as an additional product. Attempts to generate an isolable copper hydride complex of the type [(6‐MesDAC)CuH] by reaction of 1 with Et3SiH resulted instead in migratory insertion to generate [(6‐MesDAC‐H)Cu(P(p‐tolyl)3)] ( 9 ) upon trapping by P(p‐tolyl)3. Migratory insertion was also observed during attempts to prepare [(6‐Mes)CuH], with [(6‐Mes‐H)Cu(6‐Mes)] ( 10 ) isolated, following a reaction that was significantly slower than in the 6‐MesDAC case. The longer lifetime of [(6‐Mes)CuH] allowed it to be trapped stoichiometrically by alkyne, and also employed in the catalytic semi‐reduction of alkynes and hydrosilylation of ketones.  相似文献   

4.
Reported herein is a new, metathetical P for O(Cl) exchange mediated by an anionic niobium phosphide complex that furnished phosphaalkynes (RCP) from acid chlorides (RC(O)Cl) under mild conditions. The niobaziridine hydride complex, Nb(H)(tBu(H)C=NAr)(N[Np]Ar)2 (1, Np = neopentyl, Ar = 3,5-Me2C6H3), has been shown previously to react with elemental phosphorus (P4), affording the mu-diphosphide complex, (mu2:eta2,eta2-P2)[Nb(N[Np]Ar)3]2, (2), which can be subsequently reduced by sodium amalgam to the anonic, terminal phosphide complex, [Na][PNb(N[Np]Ar)3] (3). It is now shown that treatment of 3 with either pivaloyl (t-BuC(O)Cl) or 1-adamantoyl (1-AdC(O)Cl) chloride provides the thermally unstable niobacyles, (t-BuC(O)P)Nb(N[Np]Ar)3 (4-t-Bu) and (1-AdC(O)P)Nb(N[Np]Ar)3 (4-1-Ad), which are intermediates along the pathway to ejection of the known phosphaalkynes t-BuCP (5-t-Bu) and 1-AdCP(5-1-Ad). Phosphaalkyne ejection from 4-t-Bu and 4-1-Ad proceeds with formation of the niobium(V) oxo complex ONb(N[Np]Ar)3 (6) as a stable byproduct. Preliminary kinetic measurements for fragmentation of 4-t-Bu to 5-t-Bu and 6 in C6D6 solution are consistent with a first-order process, yielding the thermodynamic parameters DeltaH = 24.9 +/- 1.4 kcal mol-1 and DeltaS = 2.4 +/- 4.3 cal mol-1 K-1 over the temperature range 308-338 K. Separation of volatile 5-t-Bu from 6 after thermolysis has been readily achieved by vacuum transfer in yields of 90%. Pure 6 is recovered after vacuum transfer and can be treated with 1.0 equiv of triflic anhydride (Tf2O, Tf = O2SCF3) to afford the bistriflate complex, Nb(OTf)2(N[Np]Ar)3 (7), in high yield. Complex 7 provides direct access to 1 upon reduction with magnesium anthracene, thus completing a cycle of element activation, small-molecule generation via metathetical P-atom transfer, and deoxygenative recycling of the final niobium(V) oxo product.  相似文献   

5.
Treatment of CrCl2(THF)2 with NaOSitBu3 afforded the butterfly dimer [(tBu3SiO)Cr]2(mu-OSitBu3)2 (1(2)), whose d(CrCr) of 2.658(31) A and magnetism were indicative of strong antiferromagnetic coupling. A Boltzmann distribution of low-energy 1A1, 3B1, 5A1, 7B1, and 9A1 states obtained from calculations on [(HO)2Cr]2(muOH)2 (1'(2)) were used to provide a reasonable fit of the mu(eff) vs T data. Cleavage of 1(2) with various L (L = 4-picoline, p-tolunitrile, tBuCN, tBuNC, Ph2CO, and PMe3) generated (tBu3SiO)2CrL2 (1-L2). The dimer was oxidatively severed by Ph2CN2 to give (tBu3SiO)2Cr(N2CPh2)2 (2) and by RN3 at 23 degrees C to afford (silox)2Cr=NR (3-R) for bulky R (adamantyl (Ad), 2,6-iPr2-C6H3, 2,4,6-Me3-C6H2 = Mes, 2,6-Ph2-C6H3) and (tBu3SiO)2Cr(=NR)2 (4-R) for smaller substituents (R = 1-Naph, 2-Anth). X-ray structural studies were conducted on 1(2), square planar 1-(OCPh2)2, pseudo-Td 2 and pseudo-trigonal 3-(2,6-Ph2-C6H3), whose S = 1 ground state was discussed on the basis of calculations of (H3SiO)2Cr=NPh (3' '-Ph).  相似文献   

6.
A new class of pi-conjugated macromolecule, poly(p-phenylenephosphaalkene) (PPP), is reported. PPPs are phosphorus analogues of the important electronic material poly(p-phenylenevinylene) (PPV) where P=C rather than C=C bonds space phenylene moieties. Specifically, PPPs [-C(6)R(4)-P=C(OSiMe(3))-C(6)R'(4)-C(OSiMe(3))=P-](n)() (1: R = H, R' = Me; 11: R = Me, R' = H) were synthesized by utilizing the Becker reaction of a bifunctional silylphosphine, 1,4-C(6)R(4)[P(SiMe(3))(2)](2), and diacid chloride 1,4-C(6)R'(4)[COCl](2). Several model compounds for PPP are reported. Namely, mono(phosphaalkene)s R-P=C(OSiMe(3))-R' (4: R = Ph, R' = Mes; 7: R = Mes, R' = Ph), C-centered bis(phosphaalkene)s R-P=C(OSiMe(3))-C(6)R'(4)-C(OSiMe(3))=P-R (5: R = Ph, R' = Me; 8: R = Mes, R' = H), and P-centered bis(phosphaalkene)s R-C(OSiMe(3))=P-C(6)R'(4)-P=C(OSiMe(3))-R (6: R = Mes, R' = H; 10: R = Ph, R' = Me). Remarkably, selective Z-isomer formation (i.e., trans arylene moieties) is observed for PPPs when bulky P-substituents are employed while E/Z-mixtures are otherwise obtained. X-ray crystal structures of Z-7, Z,Z-8, and Z,Z-10 suggest moderate pi-conjugation. The twist angles between the P=C plane and unsubstituted arenes are 16 degrees -26 degrees , while those between the P=C plane and methyl-substituted arenes are 59 degrees -67 degrees . The colored PPPs and their model compounds were studied by UV/vis spectroscopy, and the results are consistent with extended pi-conjugation. Specifically, weakly emissive polymer E/Z-1 (lambda(max) = 338 nm) shows a red shift in its absorbance from model E/Z-4 (lambda(max) = 310 nm), while a much larger red shift is observed for Z-11 (lambda(max) = 394 nm) over Z-7 (lambda(max) = 324 nm).  相似文献   

7.
The reaction of the arylated Fischer carbene complexes [(CO)5M=C(OEt)Ar] (Ar=Ph; M = Cr, W; 2-MeC6H4; 2-MeOC6H; M = W) with the phosphaalkenes RP=C(NMe2), (R=tBu, SiMe3) afforded the novel phosphaalkene complexes [[RP=C(OEt)Ar]M(CO)5] in addition to the compounds [(RP=C(NMe2)2]M(CO)5]. Only in the case of the R = SiMe3 (E/Z) mixtures of the metathesis products were obtained. The bis(dimethylamino)methylene unit of the phosphaalkene precursor was incorporated in olefins of the type (Me2N)2C=C(OEt)(Ar). Treatment of [(CO)5W=C(OEt)(2-MeOC6H4)] with HP=C(NMe2)2 gave rise to the formation of an E/Z mixture of [[(Me2N)2CH-P=C(OEt)(2-MeOC6H4)]W(CO)5] the organophosphorus ligand of which formally results from a combination of the carbene ligand and the phosphanediyl [P-CH(NMe2)2]. The reactions reported here strongly depend on an inverse distribution of alpha-electron density in the phosphaalkene precursors (Pdelta Cdelta+), which renders these molecules powerfu] nucleophiles.  相似文献   

8.
Pandey KK 《Inorganic chemistry》2001,40(20):5092-5096
Ab initio calculations at the SCF, MP2, CASSCF, and CASPT2 levels of theory with basis sets using atomic pseudopotentials have been carried out for the stretched eta(3)-hydridoborate sigma-complex of niobium, [Cl2Nb(H2B(OH)2)], in order to investigate the nature and energetics of the interaction between the transition metal and the eta(3)-hydridoborate ligand. The geometry of the complex [Cl2Nb(H2B(OH)2] and its fragments [Cl2Nb](+) and [H2B(OH)2](-) were optimized at SCF and CASSCF levels. These results are consistent with [Cl2Nb(eta(3)-H2B(OH)2)] being a Nb(III) complex in which both hydrogen and boron of the [eta(3)-H2B(OH)2](-) ligand have a bonding interaction with the niobium preserving stretching B-H bond character. The calculated values of DEF (energy required to restore the fragment from the equilibrium structure to the structure it takes in the complex) for [Cl2Nb](+) are 5.35 kcal/mol at SCF, 3.27 kcal/mol at MP2, 4.80 kcal/mol at CASSCF, and 2.82 kcal/mol at CASPT2 and for [H2B(OH)2](-) 21.13 kcal/mol at SCF, 23.85 kcal/mol at MP2, 20.69 kcal/mol at CASSCF, and 23.48 kcal/mol at CASPT2. Values of INT (stabilization energy resulting from the coordination of distorted ligand to the metal fragment) for the complex [Cl2Nb(H2B(OH)2)] are -239.35 kcal/mol at SCF, -260.00 kcal/mol at MP2, -230.76 kcal/mol at CASSCF, and -252.60 kcal/mol at CASPT2. For the complex [(eta(5)-C5H5)2Nb(H2B(OH)2)], calculations at the SCF and MP2 levels were carried out. Values of INT for [(eta(5)-C5H5)2Nb(H2B(OH)2)] are -169.93 kcal/mol at SCF and -210.62 kcal/mol at MP2. The results indicate that the bonding of the [eta(3)-H2B(OH)2](-) ligand with niobium is substantially stable. The electronic structures of [Cl2Nb(H2B(OH)2)], [(eta(5)-C5H5)2Nb(H2B(OH)2)], and its fragments are analyzed in detail as measured by Mulliken charge distributions and orbital populations.  相似文献   

9.
The metal halides of Group 5 MX(5) (M = Nb, Ta; X = F, Cl, Br) react with ketones and acetylacetones affording the octahedral complexes [MX(5)(ketone)] () and [TaX(4){kappa(2)(O)-OC(Me)C(R)C(Me)O}] (R = H, Me, ), respectively. The adducts [MX(5)(acetone)] are still reactive towards acetone, acetophenone or benzophenone, giving the aldolate species [MX(4){kappa(2)(O)-OC(Me)CH(2)C(R)(R')O}] (). The syntheses of (M = Ta, X = F, R = R' = Ph) and (M = Ta, X = Cl, R = Me, R' = Ph) take place with concomitant formation of [(Ph(2)CO)(2)-H][TaF(6)], and [(MePhCO)(2)-H][TaCl(6)], respectively. The compounds [acacH(2)][TaF(6)], and [TaF{OC(Me)C(Me)C(Me)O}(3)][TaF(6)], have been isolated as by-products in the reactions of TaF(5) with acacH and 3-methyl-2,4-pentanedione, respectively. The molecular structures of, and have been ascertained by single crystal X-ray diffraction studies.  相似文献   

10.
Reaction of 2,5-diethynylpyridine with dimesitylborane, [(Mes)(2)BH](2)(Mes = mesityl = 2,4,6-Me(3)C(6)H(2)), gave the unexpected tris-hydroboration product 1-[(Mes)(2)B]-2-[Z-1-[(Mes)(2)B]ethylidene]-5-[E-[(Mes)(2)B]vinyl]-1,2-dihydropyridine, which has been structurally characterised by single-crystal X-ray diffraction.  相似文献   

11.
The reactions of IMes [:CN(Mes)C2H2N(Mes), Mes = mesityl] and DAB [(ArN=CH)2, Ar = C6H3Pri2-2,6] with indium(I) halides have afforded the first carbene and diazabutadiene indium(II) complexes, [In2Br4(IMes)2] and [In2Cl2(DAB.)2], both of which have been crystallographically characterised.  相似文献   

12.
The rates of hydrogenation of the N2 ligand in the side-on bound dinitrogen compounds, [(eta(5)-C5Me4H)2Zr]2(mu2,eta(2),eta(2)-N2) and [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford the corresponding hydrido zirconocene diazenido complexes have been measured by electronic spectroscopy. Determination of the rate law for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) establishes an overall second-order reaction, first order with respect to each reagent. These data, in combination with a normal, primary kinetic isotope effect of 2.2(1) for H2 versus D2 addition, establish the first H2 addition as the rate-determining step in N2 hydrogenation. Kinetic isotope effects of similar direction and magnitude have also been measured for hydrogenation (deuteration) of the two other zirconocene dinitrogen complexes. Measuring the rate constants for the hydrogenation of [(eta(5)-C5Me5)(eta(5)-C5H2-1,2,4-Me3)Zr]2(mu2,eta(2),eta(2)-N2) over a 40 degrees C temperature range provided activation parameters of deltaH(double dagger) = 8.4(8) kcal/mol and deltaS(double dagger) = -33(4) eu. The entropy of activation is consistent with an ordered four-centered transition structure, where H2 undergoes formal 1,2-addition to a zirconium-nitrogen bond with considerable multiple bond character. Support for this hypothesis stems from the observation of N2 functionalization by C-H activation of a cyclopentadienyl methyl substituent in the mixed ring dinitrogen complexes, [(eta(5)-C5Me5)(eta(5)-C5H2-1,2-Me2-4-R)Zr]2(mu2,eta(2),eta(2)-N2) (R = Me, Ph), to afford cyclometalated zirconocene diazenido derivatives.  相似文献   

13.
The Nb-P triple bond in [P≡Nb(N[Np]Ar)(3)](-) (Np = CH(2)(t)Bu; Ar = 3,5-Me(2)C(6)H(3)) has produced the first case of P(4) activation by a metal-ligand multiple bond. Treatment of P(4) with the sodium salt of the niobium phosphide complex in weakly coordinating solvents led to formation of the cyclo-P(3) anion [(P(3))Nb(N[Np]Ar)(3)](-). Treatment in tetrahydrofuran (THF) led to the formation of a cyclo-P(5) anion [(Ar[Np]N)(η(4)-P(5))Nb(N[Np]Ar)(2)](-), which represents a rare example of a substituted pentaphosphacyclopentadienyl ligand. The P(4) activation pathway was shown to depend on the dimer-monomer equilibrium of the niobium phosphide reagent, which, in turn, depends on the solvent used for the reaction. The pathway leading to the cyclo-P(3) product was shown to require a 2:1 ratio of the phosphide anion to P(4), while the cyclo-P(5) formation requires a 1:1 ratio. The cyclo-P(3) salt has been isolated in 56% yield as orange crystals of the [Na(THF)](2)[(P(3))Nb(N[Np]Ar)(3)](2) dimer or in 83% yield as an orange powder of [Na(12-crown-4)(2)][(P(3))Nb(N[Np]Ar)(3)]. A solid-state X-ray diffraction experiment on the former salt revealed that each Nb-P(3) unit exhibits pseudo-C(3) symmetry, while (31)P NMR spectroscopy showed a sharp signal at -223 ppm that splits into a doublet-triplet pair below -50 °C. It was demonstrated that this salt can serve as a P(3)(3-) source upon treatment with AsCl(3), albeit with modest yield of AsP(3). The cyclo-P(5) salt was isolated in 71% yield and structurally characterized from red crystals of [Na(THF)(6)][(Ar[Np]N)(η(4)-P(5))Nb(N[Np]Ar)(2)]. The anion in this salt can be interpreted as the product of trapping of an intermediate pentaphosphacycplopentadienyl structure through migration of one anilide ligand onto the P(5) ring. The W(CO)(5)-capped cyclo-P(3) salt was also isolated in 60% yield as [Na(THF)][(OC)(5)W(P(3))Nb(N[Np]Ar)(3)] from the activation of 0.5 equiv of P(4) with the sodium salt of the tungsten pentacarbonyl adduct of the niobium phosphide anion.  相似文献   

14.
The reaction of the digold(I) diacetylide [(AuCCCH2OC6H4)2CMe2] with diphosphane ligands can lead to formation of either macrocyclic ring complexes or [2]catenanes by self-assembly. This gives an easy route to rare organometallic [2]catenanes, and the effect of the diphosphane ligand on the selectivity of self-assembly is studied. With diphosphane ligands Ph2P(CH2)xPPh2, the simple ring complex [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)] is formed selectively when x = 2, but the [2]catenanes [Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)xPPh2)]2 are formed when x = 4 or 5. When x = 3, a mixture of the simple ring and [2]catenane is formed, along with the "double-ring" complex, [Au4[(CCCH2OC6H4)2CMe2]2(Ph2P(CH2)3PPh2)2] and a "hexamer" Au2[(CCCH2OC6H4)2CMe2](Ph2P(CH2)3PPh2)]6] whose structure is not determined. A study of the equilibria between these complexes by solution NMR techniques gives insight into the energetics and mechanism of [2]catenane formation. When the oligomer [(AuCCCH2OC6H4)2CMe2] was treated with a mixture of two diphosphane ligands, or when two [2]catenane complexes [[Au2[(CCCH2OC6H4)2CMe2](diphosphane)]2] were allowed to equilibrate, only the symmetrical [2]catenanes were formed. The diphosphanes Ph2PCCPPh2, trans-[Ph2PCH=CHPPh2] and (Ph2PC5H4)2Fe give the corresponding ring complexes [Au2[(CCCH2OC6H4)2CMe2](diphosphane)], and the chiral, unsymmetrical diacetylide [Au2[(CCCH2OC6H4C(Me)(CH2CMe2)C6H3OCH2CC)] gives macrocyclic ring complexes with all diphosphane ligands Ph2P(CH2)xPPh2 (x = 2-5).  相似文献   

15.
Reaction of the diborane(4) B(2)(NMe(2))(2)I(2) with two equivalents of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Cr, Mo, W) yielded the dinuclear boryloxycarbyne complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO](2)B(2)(NMe(2))(2)] (4 a, M=Mo; b, M=W; c, M=Cr), which were fully characterised in solution by multinuclear NMR methods. The Mo and W complexes 4 a, b proved to be kinetically favoured products of this reaction and underwent quantitative rearrangement in solution to afford the complexes [[(eta(5)-C(5)H(5))(OC)(2)M(triple bond)CO]B(NMe(2))B(NMe(2))[M(CO)(3)(eta(5)-C(5)H(5))]] (5 a, M=Mo; b, M=W); 5 a was characterised by X-ray crystallography in the solid state. Corresponding reactions of B(2)(NMe(2))(2)I(2) with only one equivalent of K[(eta(5)-C(5)H(5))M(CO)(3)] (M=Mo, W) initially afforded 1:1 mixtures of the boryloxycarbyne complexes 4 a, b and unconsumed B(2)(NMe(2))(2)I(2). This mixture, however, yielded finally the diborane(4)yl complexes [(eta(5)-C(5)H(5))(OC)(3)M[B(NMe(2))B(NMe(2))I]] (6 a, M=Mo; b, M=W) by [(eta(5)-C(5)H(5))(OC)(3)M] transfer and rearrangement. Density functional calculations were carried out for 4 c and 5 a, b.  相似文献   

16.
Photolysis of the equilibrium mixture (silox)3NbPMe3 (1) + H2 (1-3 atm) right arrow over left arrow (silox)3Nb(Heq)2 (2e, tbp)/(silox)3Nb(Ht)2 (2t, pseudo-Td) + PMe3 causes PC bond cleavage. Depending on conditions, various amounts of (silox)3Nb=CH2 (3), (silox)3Nb=PH (5-H), (silox)3Nb=PMe (5-Me), (silox)3Nb=P(H)Nb(silox)3 (9, precipitated if N2 is present; X-ray), (silox)3NbH (4, active only through equilibration with 2e,t), and CH4 are produced. Addition of PH3 to 1 provides an independent route to 5-H; its deprotonation gives [(silox)3NbP]Li (6), whose methylation yields 5-Me. Early conversion 3:5-H ratios of approximately 3:1 suggest that initial PC bond activation is slow relative to subsequent PC bond cleavages. Addition of HPMe2 and H2PMe to 1 generates (silox)3HNbPMe2 (7) and (silox)3HNbPHMe (8), respectively, and both degrade faster than PMe3. A mechanism based around sequential PC or CH oxidative addition, followed by 1,2-elimination events, is proposed. The limiting step in the decomposition of all PMe3 is a slow hydrogenation of 3 to regenerate 2e,t and produces CH4. Hydrides 2e,t are likely to be the photolytically active species.  相似文献   

17.
New Copper Complexes Containing Phosphaalkene Ligands. Molecular Structure of [Cu{P(Mes*)C(NMe2)2}2]BF4 (Mes* = 2,4,6‐tBu3C6H2) Reaction of equimolar amounts of the inversely polarized phosphaalkene tBuP=C(NMe2)2 ( 1a ) and copper(I) bromide or copper(I) iodide, respectively, affords complexes [Cu3X3{μ‐P(tBu)C(NMe2)2}3] ( 2 ) (X =Br) and ( 3 ) (X = I) as the formal result of the cyclotrimerization of a 1:1‐adduct. Treatment of 1a with [Cu(L)Cl] (L = PiPr3; SbiPr3) leads to the formation of compounds [CuCl(L){P(tBu)C(NMe2)2}] ( 4a ) (L = PiPr3) and ( 4b ) (L = SbiPr3), respectively. Reaction of [(MeCN)4Cu]BF4 with two equivalents of PhP=C(NMe2)2 ( 1b ) yields complex [Cu{P(Ph)C(NMe2)2}2]BF4 ( 5b ). Similarly, compounds [Cu{P(Aryl)C(NMe2)2}2]BF4 ( 5c (Aryl = Mes and 5d (Aryl = Mes*)) are obtained from ArylP=C(NMe2)2 ( 1c : Aryl = Mes; 1d : Mes*) and [(MeCN)4Cu]BF4 in the presence of SbiPr3. Complexes 2 , 3 , 4a , 4b , and 5b‐5d are characterized by means of elemental analyses and spectroscopy (1H‐, 13C{1H}‐, 31P{1H}‐NMR). The molecular structure of 5d is determined by X‐ray diffraction analysis.  相似文献   

18.
The synthesis and reactivity of the cationic niobium and tantalum monomethyl complexes [(BDI)MeM(N(t)Bu)][X] (BDI = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-(i)Pr(2)C(6)H(3); M = Nb, Ta; X = MeB(C(6)F(5))(3), B(C(6)F(5))(4)] was investigated. The cationic alkyl complexes failed to irreversibly bind CO but formed phosphine-trapped acyl complexes [(BDI)(R(3)PC(O)Me)M(N(t)Bu)][B(C(6)F(5))(4)] (R = Et, Cy) in the presence of a combination of trialkylphosphines and CO. Treatment of the monoalkyl cationic Nb complex with XylNC (Xyl = 2,6-Me(2)-C(6)H(3)) resulted in irreversible formation of the iminoacyl complex [(BDI)(XylN[double bond, length as m-dash]C(Me))Nb(N(t)Bu)][B(C(6)F(5))(4)], which did not bind phosphines but would add a methide group to the iminoacyl carbon to provide the known ketimine complex (BDI)(XylNCMe(2))Nb(N(t)Bu). Further stoichiometric chemistry explored i) migratory insertion reactions to form new alkoxide, amidinate, and ketimide complexes; ii) protonolysis reactions with Ph(3)SiOH to form thermally robust cationic siloxide complexes; and iii) catalytic high-density polyethylene formation mediated by the cationic Nb methyl complex.  相似文献   

19.
Treatment of p-tert-butylcalix[6]areneH(6) (H(6)tBu-L) or p-tert-butylcalix[8]areneH(8) (H(8)tBu-L(1)) with [MCl(5)] (M=Nb, Ta) in refluxing toluene or dichloromethane affords, after work-up, the complexes [{M(NCMe)Cl(2)}(2)(tBu-L)] (M=Nb (1), Ta (2)) and [(MCl(2))(2)(tBu-L(1)H(2))] (M=Nb (4), Ta (5)), respectively. Complex 1, as well as [{Nb(2)(mu-O)(2)(mu-Cl)(tBu-LH)}(2)] (3), is also available from [NbOCl(3)] and H(6)tBu-L. Reaction of [MOCl(3)] (M=Nb, Ta) with Li(3)(tBu-L(2)) in diethyl ether, where H(3)tBu-L(2) is p-tert-butylhexahomotrioxacalix[3]areneH(3), affords, after work-up, the trimeric complexes [{M(tBu-L(2))(mu-O)}(3)] (M=Nb (6), Ta (7)). The behaviour of 1 to 7 (not 3), as well as the known complexes [{(MCl)p-tert-butylcalix[4]arene}(2)] (M=Nb (8), Ta (9)) and [(MCl(2))p-tert-butylcalix[4]arene(OMe)] (M=Nb (10), Ta (11)), as pro-catalysts for the polymerisation of ethylene has been investigated. In the presence of dimethyl (or diethyl)aluminium chloride, methylaluminoxane or trimethylaluminium, these niobium and tantalum procatalysts are all active (<35 g mmol(-1) h(-1) bar(-1)), for the polymerisation of ethylene affording high-molecular-weight linear polyethylene. The dimethyleneoxa-bridged systems (derived from 6 and 7) are more active (84 and 46 g mmol(-1) h(-1) bar(-1), respectively) than the methylene-bridged systems. The molecular structures of 1-6 and 10 (acetonitrile solvate) are reported.  相似文献   

20.
Huang JS  Yu GA  Xie J  Zhu N  Che CM 《Inorganic chemistry》2006,45(15):5724-5726
Treatment of [Ru(II)(Por)(CO)] [Por = porphyrinato(2-)] and O=PCl(2)R [R = Ad (adamantyl), Bu(t), Bu(sec)] or PCl2Mes (Mes = mesityl) with LiAlH4 afforded primary alkyl- and arylphosphine complexes [Ru(II)(Por)(PH2R)2], which have been isolated in pure form and characterized by 1H NMR, 31P NMR, IR, and UV-vis spectroscopy and mass spectrometry. The structures of [Ru(II)(TTP)(PH2Ad)2] and [Ru(II)(F20-TPP)(PH2Mes)2] were determined by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号