首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The quinonoid ligand-bridged diruthenium compounds [(acac)(2)Ru(mu-L(2-))Ru(acac)(2)] (acac(-)=acetylacetonato=2,4-pentanedionato; L(2-)=2,5-dioxido-1,4-benzoquinone, 1; 3,6-dichloro-2,5-dioxido-1,4-benzoquinone, 2; 5,8-dioxido-1,4-naphthoquinone, 3; 2,3-dichloro-5,8-dioxido-1,4-naphthoquinone, 4; 1,5-dioxido-9,10-anthraquinone, 5; and 1,5-diimido-9,10-anthraquinone, 6) were prepared and characterized analytically. The crystal structure analysis of 5 in the rac configuration reveals two tris(2,4-pentanedionato)ruthenium moieties with an extended anthracenedione-derived bis(ketoenolate) pi-conjugated bridging ligand. The weakly antiferromagnetically coupled {Ru(III)(mu-L(2-))Ru(III)} configuration in 1-6 exhibits complicated overall magnetic and EPR responses. The simultaneous presence of highly redox-active quinonoid-bridging ligands and of two ruthenium centers capable of adopting the oxidation states +2, +3, and +4 creates a large variety of possible oxidation state combinations. Accordingly, the complexes 1-6 exhibit two reversible one-electron oxidation steps and at least two reversible reduction processes. Shifts to positive potentials were observed on introduction of Cl substituents (1-->2, 3-->4) or through replacement of NH by O (6-->5). The ligand-to-metal charge transfer (LMCT) absorptions in the visible region of the neutral molecules become more intense and shifted to lower energies on stepwise reduction with two electrons. On oxidation, the para-substituted systems 1-4 exhibit monocation intermediates with intervalence charge transfer (IVCT) transitions of Ru(III)Ru(IV) mixed-valent species. In contrast, the differently substituted systems 5 and 6 show no such near infrared (NIR) absorption. While the first reduction steps are thus assigned to largely ligand-centered processes, the oxidation appears to involve metal-ligand delocalized molecular orbitals with variable degrees of mixing.  相似文献   

2.
Reaction of trans-Ru(DMSO)4Cl2 with DMAP (DMAP = 4-dimethylaminopyridine) yields the yellow [Ru(DMAP)6](2+) cation in good yield. The crystal and molecular structure of [Ru(DMAP)6]Cl2.6CH3CH2OH was determined by X-ray diffraction methods. The complex crystallizes in the trigonal R3 space group with a = b = 16.373(1), c = 20.311(1) A, gamma = 120 degrees , and Z = 3 molecules per unit cell. The reaction of [Ru(DMAP)6](2+) in aerobic water gives the red [Ru(III)(DMAP)5(OH)](2+) cation. This complex shows a chemical behavior similar to [Ru(III)(NH3)5Cl](2+) and allows the preparation of a family of [Ru(DMAP)5L](n+) complexes. Their electronic properties indicate that the {Ru(II)(DMAP)5} fragment is a weaker pi-donor than {Ru(II)(NH 3)5}. Our density functional theory (DFT) calculations show that in {Ru(II)(DMAP)5} the DMAP ligands can compete for the pi electron density of the ruthenium making the fragment a weaker pi-donor.  相似文献   

3.
The diruthenium(III) compound [(μ-oxa){Ru(acac)(2)}(2)] [1, oxa(2-) =oxamidato(2-), acac(-) =2,4-pentanedionato] exhibits an S=1 ground state with antiferromagnetic spin-spin coupling (J=-40 cm(-1)). The molecular structure in the crystal of 1?2 C(7)H(8) revealed an intramolecular metal-metal distance of 5.433 ? and a notable asymmetry within the bridging ligand. Cyclic voltammetry and spectroelectrochemistry (EPR, UV/Vis/NIR) of the two-step reduction and of the two-step oxidation (irreversible second step) produced monocation and monoanion intermediates (K(c) =10(5.9)) with broad NIR absorption bands (ε ca. 2000 M(-1)cm(-1)) and maxima at 1800 (1(-)) and 1500 nm (1(+)). TD-DFT calculations support a Ru(III)Ru(II) formulation for 1(-) with a doublet ground state. The 1(+) ion (Ru(IV)Ru(III)) was calculated with an S=3/2 ground state and the doublet state higher in energy (ΔE=694.6 cm(-1)). The Mulliken spin density calculations showed little participation of the ligand bridge in the spin accommodation for all paramagnetic species [(μ-oxa){Ru(acac)(2)}(2)](n), n=+1, 0, -1, and, accordingly, the NIR absorptions were identified as metal-to-metal (intervalence) charge transfers. Whereas only one such NIR band was observed for the Ru(III)Ru(II) (4d(5)/4d(6)) system 1(-), the Ru(IV)Ru(III) (4d(4)/4d(5)) form 1(+) exhibited extended absorbance over the UV/Vis/NIR range.  相似文献   

4.
The calculations of the electronic structure and spectra of [Ru(NH3)5L]2+ (L = imidazole, histidine) and [Ru(NH3)5L]3+ (L = imidazole, N-imidazolate anion, 4-methylimidazole, 4-methyl-1N-imidazolate anion and 1N-bound histidine) complexes are performed in the framework of the CI method in the INDO/CNDO approximation. The MO diagram is obtained. The assignment of all transitions with energies of 4-5 eV is made and the nature of corresponding excited states is discussed. For the Ru(II) complexes, the lower energy observable transition is assigned to d-->pi* type, whereas the higher energy one is assigned to pi-->pi* type. In the spectra of the Ru(III) complexes with charged ligands both transitions are of pi-->d character, while in the case of uncharged ligands, the higher energy transition mostly incorporates pi-->pi* excitations.  相似文献   

5.
The reaction of Ru(trpy)Cl(3) (trpy = 2,2':6',2"-terpyridine) with the pyridine-based imine function N(p)C(5)H(4)-CH=N(i)-NH-C(6)H(5) (L), incorporating an NH spacer between the imine nitrogen (N(i)) and the pendant phenyl ring, in ethanol medium followed by chromatographic work up on a neutral alumina column using CH(3)CN/CH(2)Cl(2) (1:4) as eluent, results in complexes of the types [Ru(trpy)(L')](ClO(4))(2) (1) and [Ru(trpy)(L)Cl]ClO(4) (2). Although the identity of the free ligand (L) has been retained in complex 2, the preformed imine-based potentially bidentate ligand (L) has been selectively transformed into a new class of unusual imine-amidine-based tridentate ligand, N(p)C(5)H(4)-CH=N(i)-N(C(6)H(5))C(CH(3))=N(a)H (L'), in 1. The single-crystal X-ray structures of the free ligand (L) and both complexes 1 and 2 have been determined. In 2, the sixth coordination site, that is, the Cl(-) function, is cis to the pyridine nitrogen (N(p)) of L which in turn places the NH spacer away from the Ru-Cl bond, whereas, in 1, the corresponding sixth position, that is, the Ru-N(a) (amidine) bond, is trans to the pyridine nitrogen (N(p)) of L'. The trans configuration of N(a) with respect to the N(p) of L' in 1 provides the basis for the selective L --> L' transformation in 1. The complexes exhibit strong Ru(II) --> pi* (trpy) MLCT transitions in the visible region and intraligand transitions in the UV region. The lowest energy MLCT band at 510 nm for 2 has been substantially blue-shifted to 478 nm in the case of 1. The reversible Ru(III)-Ru(II) couples for 1 and 2 have been observed at 0.80 and 0.59 V versus SCE, respectively. The complexes are weakly luminescent at 77 K, exhibiting emissions at lambda(max), 598 nm [quantum yield (Phi) = 0.43 x 10(-2)] and 574 nm (Phi = 0.28 x 10(-2)) for 1 and 2, respectively.  相似文献   

6.
Comparisons of the spectroscopic properties of a number of Ru(III) complexes of imidazole ligands provide methods of distinguishing between various types of bonding that can occur in proteins and nucleic acids. In particular, EPR and (1)H NMR parameters arising from the paramagnetism of Ru(III) should aid in determining binding sites of Ru(III) drugs in macromolecules. Electrochemical studies on several imidazole complexes of ruthenium suggest that imidazole may serve as a significant pi-acceptor ligand in the presence of anionic ligands. Crystal structures are reported on two active immunosuppressant complexes. cis-[(Im)(2)(NH(3))(4)Ru(III)]Br(3) crystallizes in the triclinic space group P&onemacr; (No. 2) with the cell parameters a = 8.961(2) ?, b = 12.677(3) ?, c = 7.630(2) ?, alpha = 98.03(2) degrees, beta = 100.68(2) degrees, gamma = 81.59(2) degrees, and Z = 2 (R = 0.044). [(1MeIm)(6)Ru(II)]Cl(2).2H(2)O crystallizes in the monoclinic space group P2(1)/n (No. 14) with the cell parameters a = 7.994(2) ?, b = 13.173(4) ?, c = 14.904(2) ?, beta = 97.89(1) degrees, and Z = 2 (R = 0.052). The average Ru(II)-N bond distance is 2.106(8) ?.  相似文献   

7.
Monoperoxovanadium(V) complexes, [NH3(CH2)2NH3][VO(O2)(ox)(pic)].2H2O (1) and [NH3(CH2)2NH3][VO(O2)(ox)(pca)] (2) [NH3(CH2)2NH3 = ethane-1,2-diammonium(2+), ox=oxalate(2-), pic=pyridine-2-carboxylate(1-), pca=pyrazine-2-carboxylate(1-)], were synthesized and characterized by X-ray analysis, IR and Raman spectroscopies. The five equatorial positions of the pentagonal bipyramid around the vanadium atoms are occupied by the eta2-peroxo ligand, two oxygen atoms of the ox, and the nitrogen atom of the pic or pca ligands, respectively. The oxo ligand and the oxygen atom of pic or pca are in the axial positions. Networks of X-HO (X=C, N or O) hydrogen bonds, and pi-pi interactions between aromatic rings in and anion-pi interactions in , determine the molecular packings and build up the supramolecular architecture. Three stereochemical rules for occupation of the donor sites in two-heteroligand [VO(O2)(L1)(L2)] complexes (L1, L2 are bidentate neutral or differently charged anionic heteroligands providing an OO, NN or ON donor set) are discussed. and crystallize as racemic compounds. The 51V NMR spectra proved that the parent complex anions of and partially decompose on dissolution in water to the monoperoxo-ox, -pic or -pca complexes.  相似文献   

8.
利用密度泛函理论(DFT)中的B3LYP方法优化了氮化钌和氮化锇配合物[M(N)X2]-[M=Ru, Os; X=S2C6H4, mnt(maleonitriledithiolate)]的基态几何结构, 得到的几何参数与实验结果吻合得很好. 采用TD-DFT方法, 得到了配合物在CH3CN溶液中的激发态电子结构和电子吸收光谱. 利用SCRF方法中的CPCM模型来模拟溶剂化效应. 研究结果表明, 配合物1~4在CH3CN溶液中的吸收跃迁性质相似, 低能吸收均被指认为LMCT和LLCT的混合跃迁, 高能吸收均被指认为ILCT/LLCT跃迁.  相似文献   

9.
Mononuclear [Ru(II)(tptz)(acac)(CH3CN)]ClO4 ([1]ClO4) and mixed-valent dinuclear [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(CH3CN)]ClO4 ([5]ClO4; acac = acetylacetonate) complexes have been synthesized via the reactions of Ru(II)(acac)2(CH3CN)2 and 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), in 1:1 and 2:1 molar ratios, respectively. In [1]ClO4, tptz binds with the Ru(II) ion in a tridentate N,N,N mode (motif A), whereas in [5]ClO4, tptz bridges the metal ions unsymmetrically via the tridentate neutral N,N,N mode with the Ru(II) center and cyclometalated N,C- state with the Ru(III) site (motif F). The activation of the coordinated nitrile function in [1]ClO4 and [5]ClO4 in the presence of ethanol and alkylamine leads to the formation of iminoester ([2]ClO4 and [7]ClO4) and amidine ([4]ClO4) derivatives, respectively. Crystal structure analysis of [2]ClO4 reveals the formation of a beautiful eight-membered water cluster having a chair conformation. The cluster is H-bonded to the pendant pyridyl ring N of tptz and also with the O atom of the perchlorate ion, which, in turn, makes short (C-H- - - - -O) contacts with the neighboring molecule, leading to a H-bonding network. The redox potentials corresponding to the Ru(II) state in both the mononuclear {[(acac)(tptz)Ru(II)-NC-CH3]ClO4 ([1]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-OC2H5]ClO4 ([2]ClO4) > [(acac)(tptz)Ru(II)-NH2-C6H4(CH3)]ClO4 ([3]ClO4) > [(acac)(tptz)Ru(II)-NH=C(CH3)-NHC2H5]ClO4 ([4]ClO4)} and dinuclear {[(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NC-CH3)]ClO4 ([5]ClO4), [(acac)2Ru(III){(mu-tptz-H+(N+-O-)2)-}Ru(II)(acac)(NC-CH3)]ClO4 ([6]ClO4), [(acac)2Ru(III){(mu-tptz-H+)-}Ru(II)(acac)(NH=C(CH3)-OC2H5)]ClO4 ([7]ClO4), and [(acac)2Ru(III){(mu-tptz-Eta+)-}Ru(II)(acac)(NC4H4N)]ClO4 ([8]ClO(4))} complexes vary systematically depending on the electronic nature of the coordinated sixth ligands. However, potentials involving the Ru(III) center in the dinuclear complexes remain more or less invariant. The mixed-valent Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) exhibits high comproportionation constant (Kc) values of 1.1 x 10(12)-2 x 10(9), with substantial contribution from the donor center asymmetry at the two metal sites. Complexes display Ru(II)- and Ru(III)-based metal-to-ligand and ligand-to-metal charge-transfer transitions, respectively, in the visible region and ligand-based transitions in the UV region. In spite of reasonably high K(c) values for [5]ClO4-[8]ClO4, the expected intervalence charge-transfer transitions did not resolve in the typical near-IR region up to 2000 nm. The paramagnetic Ru(II)Ru(III) species ([5]ClO4-[8]ClO4) displays rhombic electron paramagnetic resonance (EPR) spectra at 77 K (g approximately 2.15 and Deltag approximately 0.5), typical of a low-spin Ru(III) ion in a distorted octahedral environment. The one-electron-reduced tptz complexes [Ru(II)(tptz.-)(acac)(CEta3CN)] (1) and [(acac)2Ru(III){(mu-tptz-Eta+).2-}Ru(II)(acac)(CH3CN)] (5), however, show a free-radical-type EPR signal near g = 2.0 with partial metal contribution.  相似文献   

10.
We report a theoretical study based on density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on the nature and role of the absorption bands involved in the nonlinear optical response of the complexes [Ru(CF3CO2)3T] (T = T1, T2; T1 = 4'-(C6H4-p-NBu2)-2,2':6',2'-terpyridine, T2 = 4'-(C6H4-p-NMe2)-2,2':6',2'-terpyridine). Geometry optimizations, performed without any symmetry constraints, confirm a twisting of the -C6H4-p-NBu2 moiety with respect to the plane of the chelated terpyridine. Despite this lack of strong pi interaction, TDDFT excited states calculations of the electronic spectrum in solution provide evidence of a relevant role of the NBu2 donor group in the low-energy LMCT band at 911 nm. Calculations also show that the two bands at higher energy (508 and 455 nm) are not attributable only to LMCT and ILCT transitions but to a mixing of ILCT/MLCT and ILCT/pi-pi* transitions, respectively. The 911 nm LMCT band, appearing at lower wavelength of the second harmonic (670 nm) of the EFISH experiment, controls the negative value of the second-order NLO response. This is confirmed by our calculations of the static component beta0(zzz) of the quadratic hyperpolarizability tensor, showing a large positive value. In addition we have found that the increase of the dipole moment upon excitation occurs, in all the characterized transitions, along the dipole moment axis, thus explaining why the EFISH and solvatochromic experimental values of the quadratic hyperpolarizability agree as sign and value.  相似文献   

11.
Eleven different Ru(2)(4+) and Ru(2)(3+) derivatives are characterized by thin-layer FTIR and UV-visible spectroelectrochemistry under a CO atmosphere. These compounds, which were in-situ electrogenerated from substituted anilinopyridine complexes with a Ru(2)(5+) core, are represented as Ru(2)(L)(4)Cl where L = 2-CH(3)ap, ap, 2-Fap, 2,3-F(2)ap, 2,4-F(2)ap, 2,5-F(2)ap, 3,4-F(2)ap, 3,5-F(2)ap, 2,4,6-F(3)ap, or F(5)ap. The Ru(2)(5+) complexes do not axially bind CO while mono- and bis-CO axial adducts are formed for the Ru(2)(4+) and Ru(2)(3+) derivatives, respectively. Six of the eleven investigated compounds exist in a (4,0) isomeric form while five adopt a (3,1) geometric conformation. These two series of compounds thus provide a large enough number of derivatives to examine trends and differences in the spectroscopic data of the two types of isomers in their lower Ru(2)(4+) and Ru(2)(3+) oxidation states. UV-visible spectra of the Ru(2)(4+) derivatives and IR spectra of the Ru(2)(3+) complexes under CO are both isomer dependent, thus suggesting that these data can be used to reliably predict the isomeric form, i.e., (3,1) or (4,0), of diruthenium complexes containing four unsymmetrical substituted anilinopyridinate bridging ligands; this was confirmed by X-ray crystallographic data for seven compounds whose structures were available.  相似文献   

12.
Photogeneration of side-on N2 linkage isomers in [Ru(NH3)5N2]2+ and [Os(NH3)5N2]2+ is achieved by irradiation with lambda = 325 nm of powder samples at T = 80 K and detected by the downshift of the nu(N-N) vibration and by the heat release at elevated temperature due to the back switching of the side-on configuration to the ground state. The concentration of the transferred molecules is evaluated by the decrease of the area of the nu(N-N) or 2nu(N-N) vibrational bands. All characteristic changes between the linear Ru-N-N and side-on configuration are predicted by DFT calculations: the structure of the anion, shifts of the vibrations, electronic excitation energy, energetic position and sequence of the electronic orbitals, the potentials of the ground and relaxed metastable state with the activation energy, saddle points and energetic position of the minimum.  相似文献   

13.
A computational study of the ground- and excited-state properties of the mixed-valence complex [(NH 3) 5Ru (III)NCRu (II)(CN) 5] (-) is presented. Employing DFT and TDDFT calculations for the complex in the gas phase and in aqueous solution, we investigate the vibrational and electronic structure of the complex in the electronic ground state as well as the character of the electronically excited states. The relevance of the various excited states for the intervalence metal-metal charge-transfer process in the complex is analyzed based on the change of charge density, spin density, and dipole moment upon photoexcitation as well as by a Mulliken-Hush analysis. Furthermore, those intramolecular modes, which are important for the charge-transfer process, are identified and characterized.  相似文献   

14.
Four complexes of the ligand 1,12-diazaperylene (DAP) have been prepared, [Ru(bpy)n(DAP)(3-n)]2+ where n = 0-2 and [Ru(DAP)3]2+. The [Ru(DAP)3]2+ complex was characterized by X-ray analysis and was found to exhibit the expected propeller-like structure with significant intermolecular pi-stacking interactions. The three Ru(II) complexes showed self-consistent optoelectronic properties with similar ligand-centered pi-pi* absorptions in the range of 333-468 nm and MLCT bands associated with the DAP which increased in intensity and decreased in energy as the number of DAP ligands varied from 1 to 3. Hypochromicity and viscosity changes were observed that were consistent with DAP intercalation into DNA, and binding constants were measured in the range of 1.4-1.6 x 10(6) M(-1) for the mixed ligand complexes. Furthermore, the complex [Ru(bpy)2(DAP)]2+ was found to photocleave plasmid DNA upon irradiation with visible light.  相似文献   

15.
Adams RD  Captain B  Fu W 《Inorganic chemistry》2003,42(4):1328-1333
The reaction of Ru(5)(CO)(15)(mu(5)-C), 1, with Ph(3)GeH at 150 degrees C has yielded two new germanium-rich pentaruthenium cluster complexes: Ru(5)(CO)(11)(mu-CO)(mu-GePh(2))(3)(mu(5)-C), 2; Ru(5)(CO)(11)(mu;-GePh(2))(4)(mu(5)-C), 3. Both compounds contain square pyramidal Ru(5) clusters with GePh(2) groups bridging three and four of the edges of the Ru(5) square base, respectively. When treated with 1 equiv of Ph(3)GeH at 150 degrees C compound 2 is converted to 3. Reaction of 3 with H(2) at 150 degrees C yielded Ru(5)(CO)(10)(mu-GePh(2))(4)(mu(5)-C)(mu-H)(2), 4, containing two hydride ligands and one less CO ligand. Reaction of 4 with hydrogen at 150 degrees C yielded the compound Ru(5)(CO)(10)(mu-GePh(2))(2)(mu(3)-GePh)(2)(mu(3)-H)(mu(4)-CH), 5, by loss of benzene and conversion of two of the bridging GePh(2) groups into triply bridging GePh groups. Compound 5 contains one triply bridging hydride ligand and a quadruply bridging methylidyne ligand formed by addition of one hydrogen atom to the carbido carbon atom.  相似文献   

16.
A series of new dicationic dihydrogen complexes of ruthenium of the type cis-[(dppm)(2)Ru(eta(2)-H(2))(L)][BF(4)](2) (dppm = Ph(2)PCH(2)PPh(2); L = P(OMe)(3), P(OEt)(3), PF(O(i)Pr)(2)) have been prepared by protonating the precursor hydride complexes cis-[(dppm)(2)Ru(H)(L)][BF(4)] (L = P(OMe)(3), P(OEt)(3), P(O(i)Pr)(3)) using HBF(4).Et(2)O. The cis-[(dppm)(2)Ru(H)(L)][BF(4)] complexes were obtained from the trans hydrides via an isomerization reaction that is acid-accelerated. This isomerization reaction gives mixtures of cis and trans hydride complexes, the ratios of which depend on the cone angles of the phosphite ligands: the greater the cone angle, the greater is the amount of the cis isomer. The eta(2)-H(2) ligand in the dihydrogen complexes is labile, and the loss of H(2) was found to be reversible. The protonation reactions of the starting hydrides with trans PMe(3) or PMe(2)Ph yield mixtures of the cis and the trans hydride complexes; further addition of the acid, however, give trans-[(dppm)(2)Ru(BF(4))Cl]. The roles of the bite angles of the dppm ligand as well as the steric and the electronic properties of the monodentate phosphorus ligands in this series of complexes are discussed. X-ray crystal structures of trans-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], cis-[(dppm)(2)Ru(H)(P(OMe)(3))][BF(4)], and cis-[(dppm)(2)Ru(H)(P(O(i)Pr)(3))][BF(4)] complexes have been determined.  相似文献   

17.
A new class of luminescent cyclometalated alkynylgold(III) complexes, [Au(RC=N(R')=CR)(CCR' ')], i.e., [Au(C=N=C)(C triple bond CR')] (HC=N=CH = 2,6-diphenylpyridine) R' ' = C6H5 1, C6H4-Cl-p 2, C6H4-NO2-p 3, C6H4-OCH3-p 4, C6H4-NH2-p 5, C6H4-C6H13-p 6, C6H13 7, [Au(tBuC=N=CtBu)(C triple bond CC6H5)] 8 (HtBuC=N=CtBuH = 2,6-bis(4-tert-butylphenyl)pyridine), and [Au(C=NTol=C)(CCC6H4-C6H13-p)] 9 (HC=NTol=CH = 2,6-diphenyl-4-p-tolylpyridine), have been synthesized and characterized. The X-ray crystal structures of most of the complexes have also been determined. Electrochemical studies show that, in general, the first oxidation wave is an alkynyl ligand-centered oxidation, while the first reduction couple is ascribed to a ligand-centered reduction of the cyclometalated ligand with the exception of 3 in which the first reduction couple is assigned as an alkynyl ligand-centered reduction. Their electronic absorption and luminescence behaviors have also been investigated. In dichloromethane solution at room temperature, the low-energy absorption bands are assigned as the pi-pi* intraligand (IL) transition of the cyclometalated RC=N(R')=CR ligand with some mixing of a [pi(C triple bond CR') --> pi*(RC=N(R')=CR)] ligand-to-ligand charge transfer (LLCT) character. The low-energy emission bands of all the complexes, with the exception of 5, are ascribed to origins mainly derived from the pi-pi* IL transition of the cyclometalated RC=N(R')=CR ligand. In the case of 5 that contains an electron-rich amino substituent on the alkynyl ligand, the low-energy emission band was found to show an obvious shift to the red. A change in the origin of emission is evident, and the emission of 5 is tentatively ascribed to a [pi(CCC6H4NH2) --> pi*(C=N=C)] LLCT excited-state origin. DFT and TDDFT computational studies have been performed to verify and elucidate the results of the electrochemical and photophysical studies.  相似文献   

18.
The cluster complex Ru(5)(CO)(12)(C(6)H(6))(mu(5)-C), 1, undergoes multiple addition reactions with Ph(3)SnH to yield two new bimetallic cluster complexes: Ru(5)(CO)(8)(mu-SnPh(2))(4)(C(6)H(6))(mu(5)-C), 2, 2% yield, and Ru(5)(CO)(7)(mu-SnPh(2))(4)(SnPh(3))(C(6)H(6))(mu(5)-C)(mu-H), 3, 26% yield, containing four and five tin ligands, respectively. Both compounds consist of a square pyramidal Ru(5) cluster with an interstitial carbido ligand and bridging SnPh(2) groups located across each of the four edges of the base of the Ru(5) square pyramid. Compound 3 contains an additional SnPh(3) group terminally coordinated to one of the ruthenium atoms in the square base.  相似文献   

19.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

20.
Crystallographically characterised 3,6-bis(2'-pyridyl)pyridazine (L) forms complexes with {(acac)2Ru} or {(bpy)2Ru2+}via one pyridyl-N/pyridazyl-N chelate site in mononuclear Ru(II) complexes (acac)2Ru(L), 1, and [(bpy)2Ru(L)](ClO4)2, [3](ClO4)2. Coordination of a second metal complex fragment is accompanied by deprotonation at the pyridazyl-C5 carbon {L --> (L - H+)-} to yield cyclometallated, asymmetrically bridged dinuclear complexes [(acac)2Ru(III)(mu-L - H+)Ru(III)(acac)2](ClO4), [2](ClO4), and [(bpy)2Ru(II)(mu-L - H+)Ru(II)(bpy)2](ClO4)3, [4](ClO4)3. The different electronic characteristics of the co-ligands, sigma donating acac- and pi accepting bpy, cause a wide variation in metal redox potentials which facilitates the isolation of the diruthenium(III) form in [2](ClO4) with antiferromagnetically coupled Ru(III) centres (J = -11.5 cm(-1)) and of a luminescent diruthenium(II) species in [4](ClO4)3. The electrogenerated mixed-valent Ru(II)Ru(III) states 2 and [4]4+ with comproportionation constants Kc > 10(8) are assumed to be localised with the Ru(III) ion bonded via the negatively charged pyridyl-N/pyridazyl-C5 chelate site of the bridging (L - H+)- ligand. In spectroelectrochemical experiments they show similar intervalence charge transfer bands of moderate intensity around 1300 nm and comparable g anisotropies (g1-g3 approximatly 0.5) in the EPR spectra. However, the individual g tensor components are distinctly higher for the pi acceptor ligated system [4]4+, signifying stabilised metal d orbitals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号