首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在77K测得的激发光谱说明Eu(DBM)32AP(DBM:二苯甲酸甲烷根,AP:安替吡啉)络合物中Eu3+离子仅有一种晶格格位.5DO→7FJ(J=0-4)跃迁光谱说明中心Eu3+离子具有C2v格位对称性.实验测得的配位体总电荷为-2.75,与理论计算值-3.00吻合较好.  相似文献   

2.
采用两步法成功合成了单一基质双光色Ba_(10-x)(PO_4)_4(SiO_4)_2∶xEu~(2+)荧光粉,研究了稀土离子占据不同的晶格格位对荧光粉光谱特性的影响。结果表明:两步法合成的荧光粉发射光谱由414 nm的蓝光波带和504 nm绿光波带两种光色组成,而传统的高温固相法制备的荧光粉只有504 nm处的绿光发射。荧光粉发光性能与Eu~(2+)离子在磷灰石晶体结构中占据的晶格位置关系十分密切。两步法荧光粉双光色的形成主要是由于在第一步氧化气氛合成过程中Eu~(3+)离子取代了基质结构中的BaⅠ和BaⅡ两个格位的Ba2+离子;在第二步还原过程结束后,Eu~(2+)离子仍然占据着两种格位,从而形成了两种具有不同配位环境的发光中心。此外,双发射峰的相对强度能够通过Eu~(2+)离子对BaⅠ格位的取代率而调节,进而实现光谱的调变。  相似文献   

3.
采用高温固相法合成K_2MgSiO_4∶Eu~(3+),Tb~(3+)系列荧光材料.通过X射线衍射谱、光致发光谱以及荧光寿命对材料的物相结构和发光性质进行了表征和研究.结果表明:系列样品的X射线衍射图谱衍射峰与标准卡片吻合得很好,实验浓度范围内Eu~(3+)、Tb~(3+)单掺或共掺没有改变K_2MgSiO_4的晶体结构.由材料的光致发光谱可以看出:Eu~(3+)单掺K_2MgSiO_4样品在394nm(~(7 )F_0→~(5 )L_6)激发下,显示主峰为613nm(~(5 )D_0→~7F_2)处的红光发射;Tb~(3+)单掺K_2MgSiO_4样品在378nm(~(7 )F_6→~(5 )G_6)激发下,显示主峰为542nm(~(5 )D_4→~7F_5)处的绿光发射.当Eu~(3+)和Tb~(3+)共掺于K_2MgSiO_4基质中时,样品呈现出Eu~(3+)较强的特征发射,Tb~(3+)发射峰则较弱,并且随着掺入Tb~(3+)离子浓度的增加,Eu~(3+)的发射明显增强,Tb~(3+)的发射没有明显变化.另外,当固定Eu~(3+)浓度,逐渐增加Tb~(3+)离子掺杂浓度时,Eu~(3+)的荧光寿命逐渐增加;固定Tb~(3+)浓度,逐渐增加Eu~(3+)离子掺杂浓度时,Tb~(3+)的荧光寿命逐渐减小.这些现象确定了K_2MgSiO_4∶Eu~(3+),Tb~(3+)荧光材料中存在Tb~(3+)→Eu~(3+)的能量传递关系,使得K_2MgSiO_4基质中Eu~(3+)红光发射得到改善和提高.  相似文献   

4.
采用自蔓延燃烧法制备了不同Eu~(3+)掺杂浓度的CaGd_1-xAlO_4:xEu~(3+)(CGA:xEu~(3+))X射线荧光粉材料.当Eu~(3+)掺杂浓度在0~0.150范围时,Eu~(3+)取代了基质中处于无中心反演对称的格位,使CGA:xEu~(3+)样品呈现为单一相,并可观察到红光发射.当x=0.100时,红光发射强度达到最大.随着Eu~(3+)离子浓度增加,Eu~(3+)离子之间的距离减小,增大了Eu~(3+)→Eu~(3+)→猝灭中心的能量传递几率,出现了发光猝灭现象.实验发现,当Eu~(3+)掺杂浓度为0.003时,光激励发光强度最大.对CGA:0.003Eu~(3+)样品进行氮气气氛热处理后,CGA中的OH~-离子基团减少,红光发射的发光强度增强.热释曲线表明CGA:0.003Eu~(3+)样品中存在两种类型的陷阱,其陷阱深度分别为0.79eV和0.93eV.经氮气热处理后的CGA:0.003Eu~(3+)样品,较深陷阱数量显著增多,光激励发光强度增强,光存储性能显著提高.随着X射线辐照时间的增加,X射线吸收剂量在0~11.8Gy范围内大致呈线性增加的趋势.当X射线吸收剂量为1.2Gy时,以在氮气气氛下热处理CGA:0.003Eu~(3+)圆片为成像板,得到了较高质量X射线红色成像.实验结果表明,Eu~(3+)掺杂的CGA X射线荧光粉材料在以CCD为光探测器的计算机X射线医学成像技术中有潜在的应用前景.  相似文献   

5.
金叶  陈远豪  刘浩文  姚静 《发光学报》2019,40(2):159-163
采用高温固相法制备了Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)红色发光材料,利用X射线衍射仪测定其晶体结构,利用Hitachi F4600表征其发光光谱。在紫外光激发下,样品Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)呈多峰发射,分别对应于Eu~(3+)的~5D_0-~7F_j(j=0,1,2,3,4)能级跃迁,主峰是位于615 nm的~5D_0-~7F_2跃迁发射。研究了Eu~(3+)掺杂浓度对材料发光性质的影响,改变Eu~(3+)掺杂浓度,样品的发射强度随之改变,Na_(8. 33)La_(1. 67)(SiO_4)_6O_2∶Eu~(3+)材料的Eu~(3+)浓度为15%时,发光强度最大。讨论了浓度猝灭的机理,理论计算表明引起Eu~(3+)离子能量弥散的主要原因是离子间交换相互作用。  相似文献   

6.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

7.
通过高温固相法制得双峰可调节本征半导体发光Ba Zn_2(BO_3)_2∶Eu~(3+)荧光粉,此类荧光粉在300~400nm的紫外波段有很强的吸收。在375 nm的紫外光激发下,该荧光粉产生了两个宽带的发射峰,分别位于550nm和615 nm处。并且,在395 nm的紫光激发下,荧光粉会由于Eu~(3+)离子的~5D_0→~7F_2电偶极跃迁产生一个位于615 nm的强宽发射峰,这表明Eu~(3+)离子占据了反演对称中心的位置,取代了Ba Zn_2(BO_3)_2中部分的Ba~(2+)离子。当Eu~(3+)的摩尔分数达到10%时,发生浓度猝灭。在不同浓度的Eu~(3+)离子的掺杂下,Ba Zn_2(BO_3)_2∶Eu~(3+)荧光粉的发光从黄色延伸到红色,实现了荧光粉的色度可调。  相似文献   

8.
采用固相反应法制备双层钙钛矿(La_(1-x)Eu_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0.0,0.1,0.2)多晶样品,并研究其结构,磁性和电输运性质.XRD结果表明,三个样品均为良好的单相结构.样品(La_(1-x)Eu_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0.0,0.1,0.2)在低温区的ZFC曲线和FC曲线出现明显分歧,表现出团簇自旋玻璃的特征.对电阻率-温度曲线的拟合结果表明,三个样品在高温区的导电机制不同.我们认为这是由于半径较小的Eu~(3+)离子替代La~(3+)离子使La位离子平均半径减小,引起晶格发生畸变,同时,Eu~(3+)离子倾向于占据钙钛矿层与岩盐层之间的R-位,使La~(3+),Sr~(3+),Eu~(3+)离子在掺Eu样品中的分布更加有序导致的.  相似文献   

9.
采用高温固相反应法制备了Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)系列荧光粉,研究Y~(3+)离子掺入对荧光粉发光性能的影响。对于Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入主要起到稳定Eu~(2+)价态的作用,避免Eu~(2+)氧化为Eu~(3+),从而提高Sr Si_2O_2N_2∶Eu~(2+)的发光性能。对于Ca Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入除了稳定Eu~(2+)价态作用外,还能有效减小Eu~(2+)取代Ca~(2+)后晶格膨胀引起的应力,提高Eu~(2+)在晶格中的溶解度。Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)(x=0,0.15,0.3,0.6,0.75,0.95)系列荧光粉中随着Ca含量的增加,共掺Y~(3+)离子对样品发光强度的提高程度也随之增加(20%~80%)。  相似文献   

10.
利用磁控溅射技术在低温250℃下制备Eu掺杂SiC_xO_y薄膜,研究薄膜的Eu~(3+) 发光激发机制。实验结果表明,薄膜的发光谱由来自基体材料的蓝光和来自Eu~(3+) 的红光组成;随着薄膜中Eu含量由0.19%增加到2.27%,其红光强度增加3倍左右,而蓝光逐渐减弱。Raman光谱及荧光瞬态谱分析表明,其蓝光由中立氧空位缺陷发光中心引起。结合薄膜的Eu~(3+) 激发光谱分析,SiC_xO_y∶Eu薄膜的红光增强源于薄膜中Eu~(3+) 离子浓度的增加和/或基体材料的中立氧空位缺陷发光中心与Eu~(3+) 离子的能量转移。  相似文献   

11.
采用高温固相还原法合成Ca_(12-x-y)M_xAl_(14)O_(32)F)2∶yEu(M=Mg,Sr,Ba)体系荧光粉,分别采用X射线粉末衍射仪和荧光光谱仪测试其物相及荧光性能,通过掺杂碱土金属离子可以调整Ca_(12)Al_(14)O_(32)F_2∶Eu~(3+)/Eu~(2+)的组成和结构,进而影响Ca_(12-x-y)M_xAl_(14)O_(32)F_2∶yEu的发光性能。研究结果表明:在Ca_(12)Al_(14)O_(32)F_2∶Eu中掺杂一定浓度的Mg~(2+)不利于Eu~(3+)的还原,掺杂一定浓度的Sr~(2+)或Ba~(2+)有利于Eu~(3+)的还原;通过改变碱土金属离子的掺杂浓度调节Eu~(3+)和Eu~(2+)的浓度比,可以调整蓝光发射和红光发射的强度比,进而使发光颜色从蓝色变为淡紫色,再变为蓝绿色。  相似文献   

12.
采用离子注入法在GaN薄膜中实现了Er~(3+)和Eu~(3+)离子的共掺杂.以阴极荧光光谱仪为主要表征手段,研究样品的光学特性和能量传递机理.在300K温度下,Er~(3+)和Eu~(3+)共掺杂GaN薄膜能够实现绿光和红光的同时发射.随着Er~(3+)离子掺杂剂量的增加,Eu~(3+)离子相关发光峰的强度减弱,Er~(3+)离子对应的两个相关发光峰强度比值减小,表明Er~(3+)和Eu~(3+)离子之间发生了能量传递,能量传递的方向为Eu~(3+)→Er~(3+).变温阴极荧光光谱显示,Er~(3+)离子的2H11/2和4S3/2两个能态相关的跃迁峰相对强度比值随着温度升高而降低,主要是由两个能级之间的热耦合导致.改变Er~(3+)离子的掺杂剂量,能够调控GaN:Er~(3+)/Eu~(3+)样品的光学色度坐标和色温,表明此材料可用于发光器件.  相似文献   

13.
通过静电纺丝技术获得直径约为700 nm,均匀且随机取向的亚微米级Eu(DBM)3Phen/PMMA纤维。在紫外光辐射下,亚微米级荧光纤维发出明亮的红色荧光。其激发光谱表明,荧光纤维有效激发波长范围为200~400 nm。利用积分球配以CCD探测器,在367 nm长波紫外LED激发下对荧光纤维开展绝对光谱功率测试。当LED泵浦功率为535.76#W时,厚度80#m的Eu(DBM)3Phen/PMMA纤维薄层对紫外辐射的吸收率高达89%,350~850 nm范围内发射的总绝对光谱功率、总光子数和总荧光量子产率分别为36.56#W、11.46×10~(13)cps和12.94%。亚微米级Eu(DBM)_3Phen/PMMA纤维薄层中,Eu~(3+)较高的跃迁发射几率及较大的发射截面使得纤维可以高效吸收紫外辐射并转变为可见光,在提高太阳能电池光电转换效率方面具有潜在应用价值。  相似文献   

14.
Eu~(3+)掺杂的Na_2YMg_2(VO_4)_3荧光粉制备和发光特性   总被引:1,自引:1,他引:0       下载免费PDF全文
李中元  李勇  夏爱林 《发光学报》2017,38(3):296-302
采用溶胶-凝胶法制备了Na2Y1-xMg2(VO4)3∶x Eu~(3+)(x=0.15~0.75)系列自激活荧光粉。用XRD、SEM、光致发光光谱和荧光衰减曲线分别对其结构、形貌和发光性能进行表征。XRD结果显示样品为纯石榴石结构,其中Eu~(3+)取代Y~(3+);SEM照片显示样品为粒径大小在0.3~1μm范围内不规则的光滑球状颗粒;光谱分析表明,Na2YMg2(VO4)3作为自激活发光基质可以被200~400 nm紫外光有效激发,发出源于VO_4~(3-)电荷迁移跃迁的波长范围为400~700 nm的宽谱带绿光。掺杂Eu~(3+)后,在340 nm紫外光激发下同时出现了VO_4~(3-)的电荷迁移带和Eu~(3+)的特征光谱。不同浓度Eu~(3+)掺杂的光谱和荧光衰减曲线表明,存在VO_4~(3-)和Eu~(3+)之间的能量传递。  相似文献   

15.
吕兆承  李营  全桂英  郑庆华  周薇薇  赵旺 《物理学报》2017,66(11):117801-117801
利用高温固相法制备了一种新型红色荧光粉(Gd_(1-x)Eu_x)_6(Te_(1-y)Mo_y)O_(12),研究了Eu~(3+)单掺和Eu~(3+),Mo~(6+)共掺Gd_6TeO_(12)荧光粉的结构、形貌和荧光性能.实验结果表明,所合成的粉体为纯相.在393 nm近紫外光激发下,(Gd_(1-x)Eu_x)_6(Te_(1-y)Mo_y)O_(12)荧光粉发出特征红光,位于632 nm处的发射主峰属于Eu~(3+)的~5D_0→~7F_2跃迁.当Eu~(3+)掺杂浓度超过20%(物质的量分数)时发光出现浓度淬灭,经证实这是由电偶极-电偶极相互作用造成的.随着工作温度升高,荧光粉发光强度减小,计算得到Eu~(3+)热淬灭过程中的激活能为0.1796 eV.当(Gd_(0.8)Eu_(0.2))_6TeO_(12)中共掺Mo~(6+_(取代Te~(6+)),该荧光粉发射光谱的峰位、强度变化不大,但是Mo~(6+)-O~(2-)电荷迁移态显著增大了近紫外波段的激发带宽度,可以有效提高激发效率.具有近紫外宽带激发特征的(Gd_(0.8)Eu_(0.2))_6(Te_(0.6)Mo_(0.4))O_(12)是一种潜在的白光LED用荧光粉材料.  相似文献   

16.
王肖芳  张弛  邓朝勇 《发光学报》2016,37(9):1037-1042
采用高温固相法制备Ca_(2-x)SnO_4:xEu~(3+)(x=0,0.001,0.005,0.01,0.015,0.02)发光材料,分别在空气和真空氛围中进行烧结,研究Eu3+掺杂浓度及基质中氧空位对样品发光性能的影响。随着Eu~(3+)离子浓度的增加,发射强度呈逐渐增大的趋势,主发射峰由两个分别位于614 nm和618 nm的峰逐步合为一个位于616nm的发射峰。在Ca_(2-x)SnO_4∶xEu~(3+)样品的激发光谱中,存在着200~295 nm的Eu~(3+)-O~(2-)电荷迁移带,随着Eu~(3+)离子浓度的增加,电荷迁移带的峰位由271 nm红移到286 nm。此外,在Eu~(3+)离子掺杂浓度相同的情况下,真空中烧结得到样品的发光强度是空气中烧结得到样品的2倍。这是由于在真空氛围中烧结产生的氧空位增加使得传导电子密度升高,导致发光强度增加。而且,氧空位的增加导致电子陷阱的增多,这使得Ca_(2-x)SnO_4∶xEu~(3+)样品的余辉性能得到了很大程度的提高。  相似文献   

17.
采用水热合成法,在较低的温度下制备了分散性,均匀性良好的LaF_3:Sm~(3+),LaF_3:Eu~(3+)和LaF_3:Sm~(3+)/Eu~(3+)纳米晶体样品。通过X射线衍射(XRD),透射电子显微镜(TEM)和光致发光(PL)等手段,分别对Sm~(3+)/Eu~(3+)单掺和共掺LaF_3纳米晶体的物相,表面形貌,晶粒尺寸和荧光特性进行了表征。XRD和TEM检测结果显示,所制备的LaF_3纳米晶体呈六方晶体相,平均粒径在40 nm左右。当采用波长为442 nm的He-Cd连续激光器激发Sm~(3+)/Eu~(3+)共掺LaF3样品中的Sm~(3+)时,在样品发射光谱中观测到了Eu~(3+)的特征荧光发射谱线,实现了Sm~(3+)向Eu~(3+)的能量传递。采用光谱学研究方法讨论了能量传递的机理和效率。结果表明,能量传递过程是Sm~(3+)的~4G_(5/2)激发态与Eu~(3+)的~5D_1和~5D_0激发态之间的交叉驰豫所致,并且随着Eu~(3+)的掺杂浓度的增大,共掺LaF_3:Sm~(3+)/Eu~(3+)样品的发射谱中的Eu~(3+)的特征荧光发射强度也随之增强,这说明增加受主Eu~(3+)的掺杂浓度能够有效地提高Sm~(3+)→Eu~(3+)能量传递的效率。  相似文献   

18.
在脉冲N_2分子激光激发下,研究了在BaYF,中Eu~(2+)和Ho~(3+)的发射光谱,激发光谱和荧光寿命,以及Ho~(3+)的超灵敏跃迁(~5I_8→~5G_6)。在Ho~(3+)发射光谱中,~5S_2→~5I_8跃迁占主导地位。从Eu~(2+)到Ho~(3+)离子发生了能量传递。实验和理论结果符合于Inokuti和Hirayama方程。无辐射能量传递的机理属于偶极子-偶极子相互作用,临界传递距离R_06A。计算了能量传递几率和效率。  相似文献   

19.
利用高温固相法合成Na_2CaSiO_4:Sm~(3+),Eu~(3+)系列荧光粉末,研究了Sm~(3+)和Eu~(3+)掺杂对Na_2CaSiO_4晶体结构的影响、材料发光特性以及存在的能量传递现象.X射线衍射结果表明Sm~(3+)和Eu~(3+)单掺及共掺样品均为单相的Na_2CaSiO_4结构,晶体结构没有改变.Na_2CaSiO_4:Sm~(3+)荧光样品在404 nm激发波长下呈现峰峰值为602 nm的橙红色荧光,来源于~4G_(5/2)→~6H_(7/2)跃迁.Na_2CaSiO_4:Eu~(3+)荧光样品在395 nm激发波长下发射出峰峰值为613 nm的红色荧光.对光谱和荧光寿命的测试和分析结果表明Sm~(3+)与Eu~(3+)之间存在能量传递,通过理论计算得到Sm~(3+)和Eu~(3+)之间的能量传递临界距离为1.36 nm,相互作用形式为电四极-电四极相互作用.随着Eu~(3+)掺杂浓度的增加,能量传递效率也逐渐提高至20.6%.  相似文献   

20.
以 2 ,3 二甲氧基苯甲酸 (2 ,3 HDMOBA)和 4 甲基苯甲酸 (p HMBA)为配体 ,合成了新的稀土配合物Eu(2 ,3 DMOBA) 3 和Eu(p MBA) 3 。在 77K下测定了高分辨激发光谱和时间分辨谱。配合物Eu(2 ,3 DMOBA) 3中Eu(Ⅲ )离子格位只有一种 ,配合物Eu(p MBA) 3 中确有化学环境类似的多种类型的Eu(Ⅲ )离子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号