首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Molecular mechanics (MM) methods are computationally affordable tools for screening chemical libraries of novel compounds for sites of P450 metabolism. One challenge for MM methods has been the absence of a consistent and transferable set of parameters for the heme within the P450 active site. Experimental data indicate that mammalian P450 enzymes vary greatly in the size, architecture, and plasticity of their active sites. Thus, obtaining X-ray-based geometries for the development of accurate MM parameters for the major classes of hepatic P450 remains a daunting task. Our previous work with preliminary gas-phase quantum mechanics (QM)-derived atomic partial charges greatly improved the accuracy of docking studies of raloxifene to CYP3A4. We have therefore developed and tested a consistent set of transferable MM parameters based on gas-phase QM calculations of two model systems of the heme-a truncated (T-HM) and a full (F-HM) for four states of the P450 catalytic cycle. Our results indicate that the use of the atomic partial charges from the F-HM further improves the accuracy of docked predictions for raloxifene to CYP3A4. Different patterns for substrate docking are also observed depending on the choice of heme model and state. Newly parameterized heme models are tested in implicit and explicitly solvated MD simulations in the absence and presence of enzyme structures, for CYP3A4, and appear to be stable on the nanosecond simulation timescale. The new force field for the various heme states may aid the community for simulations of P450 enzymes and other heme-containing enzymes.  相似文献   

2.
Accurate force fields are essential for describing biological systems in a molecular dynamics simulation. To analyze the docking of the small redox protein cytochrome c (cyt c) requires simulation parameters for the heme in both the reduced and oxidized states. This work presents parameters for the partial charges and geometries for the heme in both redox states with ligands appropriate to cyt c. The parameters are based on both protein X-ray structures and ab initio density functional theory (DFT) geometry optimizations at the B3LYP/6-31G* level. The simulations with the new parameter set reproduce the geometries of the X-ray structures and the interaction energies between water and heme prosthetic group obtained from B3LYP/6-31G* calculations. The parameter set developed here will provide new insights into docking processes of heme containing redox proteins.  相似文献   

3.
Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data base. The major departure from previous force fields is that all quantum mechanical calculations were done in the condensed phase with continuum solvent models and an effective dielectric constant of epsilon = 4. We anticipate that this force field parameter set will address certain critical short comings of previous force fields in condensed-phase simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed.  相似文献   

4.
Based on the AMBER polarizable model (ff02), we have re-optimized the parameters related to the main-chain (Phi, Psi) torsion angles by fitting to the Boltzmann-weighted average quantum mechanical (QM) energies of the important regions (i.e., beta, P(II), alpha(R), and alpha(L) regions). Following the naming convention of the AMBER force field series, this release will be called ff02pol.rl The force field has been assessed both by energetic comparison against the QM data and by the replica exchange molecular dynamics simulations of short alanine peptides in water. For Ace-Ala-Nme, the simulated populations in the beta, P(II) and alpha(R) regions were approximately 30, 43, and 26%, respectively. For Ace-(Ala)(7)-Nme, the populations in these three regions were approximately 24, 49, and 26%. Both were in qualitative agreement with the NMR and CD experimental conclusions. In comparison with the previous force field, ff02pol.rl demonstrated good balance among these three important regions. The optimized torsion parameters, together with those in ff02, allow us to carry out simulations on proteins and peptides with the consideration of polarization.  相似文献   

5.
Artocarpin isolated from an agricultural plant Artocarpus communis has shows anti‐inflammation and anticancer activities. In this study, we utilized recombinant human UDP‐glucuronosyltransferasesupersomes (UGTs) and human liver microsomes to explore its inhibitory effect on UGTs and cytochrome p450 enzymes (CYPs). Chemical inhibition studies and screening assays with recombinant human CYPs were used to identify if CYP isoform is involved in artocarpin metabolism. Artocarpin showed strong inhibition against UGT1A3, UGT1A6, UGT1A7, UGT1A8, UGT1A9, UGT1A10, UGT2B7, CYP2C8 and CYP3A4. In particular, artocarpin exhibited competitive inhibition against CYP3A4 and noncompetitive inhibition against UGT1A3 and UGT1A7. The half inhibition concentration values for CYP3A4, UGT1A3 and UGT1A7 were 4.67, 3.82 and 4.82 μm , and the inhibition kinetic parameters for them were 0.78, 2.67 and 3.14 μm , respectively. After artocarpin was incubated in human liver microsomes and determined by HPLC, we observed its main metabolites (M1 and M2). In addition, we proved that CYP2D6 played the key role in the biotransformation of artocarpin in human liver microsomes. The result of molecular docking further confirmed that artocarpin interacted with CYP2D6, CYP2C8 and CYP3A4 through hydrogen bonds. This study provided preliminary results for further research on artocarpin or artocarpin‐containing herbs.  相似文献   

6.
Mechanism‐based inhibition (MBI) of cytochrome P450 (CYP) can lead to drug–drug interactions and often to toxicity. Some aliphatic and aromatic amines can undergo biotransformation reactions to form reactive metabolites such as nitrosoalkanes, leading to MBI of CYPs. It has been proposed that the nitrosoalkanes coordinate with the heme iron, forming metabolic‐intermediate complex (MIC), resulting in the quasi‐irreversible inhibition of CYPs. Limited mechanistic details regarding the formation of reactive nitroso intermediate and its coordination with heme‐iron have been reported. A quantum chemical analysis was performed to elucidate potential reaction pathways for the generation of nitroso intermediate and the formation of MIC. Elucidation of the energy profile along the reaction path, identification of three‐dimensional structures of reactive intermediates and transition states, as well as charge and spin density analyses, were performed using the density functional B3LYP method. The study was performed using Cpd I [iron (IV‐oxo] heme porphine with SH? as the axial ligand) to represent the catalytic domain of CYP, simulating the biotransformation process. Three pathways: (i) N‐oxidation followed by proton shuttle, (ii) N‐oxidation followed by 1,2‐H shift, and (iii) H‐abstraction followed by rebound mechanism, were studied. It was observed that the proton shuttle pathway was more favorable over the whole reaction leading to reactive nitroso intermediate. This study revealed that the MIC formation from a primary amine is a favorable exothermic process, involving eight different steps and preferably takes place on the doublet spin surface of Cpd I . The rate‐determining step was identified to be the first N‐oxidation of primary amine. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
We describe a system setup that is applicable to all species in the catalytic cycle of cytochrome P450(cam). The chosen procedure starts from the X-ray coordinates of the ferrous dioxygen complex and follows a protocol that includes the careful assignment of protonation states, comparison between different conceivable hydration schemes, and system preparation through a series of classical minimizations and molecular dynamics (MD) simulations. The resulting setup was validated by quantum mechanical/molecular mechanical (QM/MM) calculations on the resting state, the pentacoordinated ferric and ferrous complexes, Compound I, the transition state and hydroxo intermediate of the C--H hydroxylation reaction, and the product complex. The present QM/MM results are generally consistent with those obtained previously with individual setups. Concerning hydration, we find that saturating the protein interior with water is detrimental and leads to higher structural flexibility and catalytically inefficient active-site geometries. The MD simulations favor a low water density around Asp251 that facilitates side chain rotation of protonated Asp251 during the conversion of Compound 0 to Compound I. The QM/MM results for the two preferred hydration schemes (labeled SE-1 and SE-4) are similar, indicating that slight differences in the solvation close to the active site are not critical as long as camphor and the crystallographic water molecules preserve their positions in the experimental X-ray structures.  相似文献   

8.
The effects of electronic polarization in biomolecular interactions will differ depending on the local dielectric constant of the environment, such as in solvent, DNA, proteins, and membranes. Here the performance of the AMOEBA polarizable force field is evaluated under nonaqueous conditions by calculating the solvation free energies of small molecules in four common organic solvents. Results are compared with experimental data and equivalent simulations performed with the GAFF pairwise‐additive force field. Although AMOEBA results give mean errors close to “chemical accuracy,” GAFF performs surprisingly well, with statistically significantly more accurate results than AMOEBA in some solvents. However, for both models, free energies calculated in chloroform show worst agreement to experiment and individual solutes are consistently poor performers, suggesting non‐potential‐specific errors also contribute to inaccuracy. Scope for the improvement of both potentials remains limited by the lack of high quality experimental data across multiple solvents, particularly those of high dielectric constant. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   

9.
The electronic structure of iron‐oxo porphyrin π‐cation radical complex Por·+FeIV?O (S? H) has been studied for doublet and quartet electronic states by means of two methods of the quantum chemical topology analysis: electron localization function (ELF) η(r) and electron density ρ(r). The formation of this complex leads to essential perturbation of the topological structure of the carbon–carbon bonds in porphyrin moiety. The double C?C bonds in the pyrrole anion subunits, represented by pair of bonding disynaptic basins Vi=1,2(C,C) in isolated porphyrin, are replaced by single attractor V(C,C)i=1–20 after complexation with the Fe cation. The iron–nitrogen bonds are covalent dative bonds, N→Fe, described by the disynaptic bonding basins V(Fe,N)i=1–4, where electron density is almost formed by the lone pairs of the N atoms. The nature of the iron–oxygen bond predicted by the ELF topological analysis, shows a main contribution of the electrostatic interaction, Feδ+···Oδ?, as long as no attractors between the C(Fe) and C(O) core basins were found, although there are common surfaces between the iron and oxygen basines and coupling between iron and oxygen lone pairs, that could be interpreted as a charge‐shift bond. The Fe? S bond, characterized by the disynaptic bonding basin V(Fe,S), is partially a dative bond with the lone pair donated from sulfur atom. The change of electronic state from the doublet (M = 2) to quartet (M = 4) leads to reorganization of spin polarization, which is observed only for the porphyrin skeleton (?0.43e to 0.50e) and S? H bond (?0.55e to 0.52e). © 2012 Wiley Periodicals, Inc.  相似文献   

10.
A sensitive and high‐throughput LC‐MS/MS method was established and validated for the simultaneous quantification of seven probe substrate‐derived metabolites (cocktail assay) for assessing the in vitro inhibition of cytochrome P450 (CYP) enzymes in pooled human liver microsomes. The metabolites acetaminophen (CYP1A2), hydroxy‐bupropion (CYP2B6), n‐desethyl‐amodiaquine (CYP2C8), 4′‐hydroxy‐diclofenac (CYP2C9), 4′‐hydroxy‐mephenytoin (CYP2C19), dextrorphan (CYP2D6) and 1′‐hydroxy‐midazolam (CYP3A4/5), together with the internal standard verapamil, were eluted on an Agilent 1200 series liquid chromatograph in <7 min. All metabolites were detected by an Agilent 6410B tandem mass spectrometer. The concentration of each probe substrate was selected by substrate inhibition assay that reduced potential substrate interactions. CYP inhibition of seven well‐known inhibitors was confirmed by comparing a single probe substrate assay with cocktail assay. The IC50 values of these inhibitors determined on this cocktail assay were highly correlated (R2 > 0.99 for each individual probe substrate) with those on single assay. The method was selective and showed good accuracy (85.89–113.35%) and between‐day (RSD <13.95%) and within‐day (RSD <9.90%) precision. The sample incubation extracts were stable at 25 °C for 48 h and after three freeze–thaw cycles. This seven‐CYP inhibition cocktail assay significantly increased the efficiency of accurately assessing compounds’ potential inhibition of the seven major CYPs in drug development settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive and high‐throughput inhibition screening liquid chromatography–mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous quantification of five probe metabolites (7‐hydroxycoumarin, CYP2A6; 4‐hydroxytolbutamide, CYP2C9; 4′‐hydroxymephenytoin, CYP2C19; α‐hydroxymetoprolol, CYP2D6; and 1‐hydroxymidazolam, CYP3A4) for in vitro cytochrome P450 activity determination in human liver microsome and recombinant. All the metabolites and the internal standard, tramadol, were separated on a Waters 2695 series liquid chromatograph with a Phenomenex Luna C18 column (150 × 2.0 mm, 5 µm). Quality control samples and a positive control CYP inhibitor were included in the method. The IC50 values determined for typical CYP inhibitors were reproducible and in agreement with the literature. The method was selective and showed good accuracy (99.13–103.37%), and inter‐day (RSD < 6.20%) and intra‐day (RSD < 6.13%) precision. Also, the incubation extracts of the sample were stable at room temperature (20 °C) for 48 h and for 96 h in the autosampler (4 °C). The presented method is the first HPLC‐MS/MS method of this combination for simultaneous detection of the five metabolites 7‐hydroxycoumarin, 4‐hydroxytolbutamide, 4′‐hydroxymephenytoin, α‐hydroxymetoprolol and 1‐hydroxymidazolam in a single‐run process. It is possible that the high‐quality and ‐throughput cocktail provides suitable information in drug discovery and screening for new drug entities. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
13.
研究了轴向配体对杯[6]芳烃-双金属卟啉仿P450酶模型催化环己烯环氧化反应的影响,并考察了反应的动力学规律,结合UV-vis监测反应的结果,提出了一种可能的反应机制。  相似文献   

14.
The structure and stereochemistry of nine steroid metabolites isolated in quantities ranging from 0.15 to 1.8 mg were determined using a variety of NMR techniques, including heteronuclear multiple bond correlation (HMBC) using broadband adiabatic 13C pulses and phase-sensitive data presentation. Testosterone, androstenedione and progesterone were oxidized with housefly cytochrome P450 6A1 enzyme reconstituted in vitro with housefly NADPH cytochrome P450 reductase and cytochrome b5. NMR analysis in CD3OD using a modified HMBC sequence as well as 2D heteronuclear single quantum correlation (HSQC), COSY and nuclear Overhauser and exchange spectroscopy (NOESY), combined with a detailed analysis of J couplings showed that hydroxylation occurs exclusively on the beta-face of the steroids, at positions 2, 12, and 15.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号