首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以金属硝酸盐作为原料,甘氨酸为燃烧剂,采用燃烧法制备了Cr,Nd:GGG激光陶瓷原料,并采用XRD,FT-IR,SEM,荧光光谱测试手段对前驱粉体进行了形貌和结构的表征。XRD测试结果表明,经900℃煅烧能形成较好的Cr,Nd:GGG相;FT-IR测试发现在655,614,571cm-1出现了比较尖锐的吸收峰,这是由于形成了GGG相,这和XRD测试结果一致;SEM照片显示Cr,Nd:GGG前驱体在900℃煅烧3 h得到粉体的粒子呈圆球形及类球形,分布较为均匀,直径为49.5 nm;荧光测试结果表明,Cr,Nd:GGG样品的最强荧光发射峰位于1063 nm左右,是Nd3+的4F3/2→4I11/2能级跃迁导致的荧光发射,并且相比于单掺Nd3+样品的荧光发射,双掺Cr3+,Nd3+(少量Cr3+)样品荧光强度增强,这个现象说明Cr3+-Nd3+之间存在能量传递。  相似文献   

2.
以Y2O3和Yb2O3为原料,采用柠檬酸溶胶-凝胶法制备了Yb:Y2O3纳米粉体,将该粉体成型后在1500℃烧结7 h获得Yb:Y2O3陶瓷。XRD测试结果表明,Yb:Y2O3纳米粉体的合成温度为800℃。扫描电镜分析表明,Yb:Y2O3粉体的平均直径为40 nm左右。差热-热重分析表明,Yb:Y2O3纳米前驱粉体中柠檬酸和硝酸等在300℃左右分解。荧光光谱分析发现Yb:Y2O3陶瓷的最强荧光发射峰位于1030 nm,是Yb3+的2F7/2-2F5/2谱项导致的荧光发射。  相似文献   

3.
采用共沉淀法制备了Sr0.99Ce0.01HfO3纳米粉体,采用常压烧结工艺制备了Sr0.99Ce0.01HfO3陶瓷材料,烧结温度和烧结时间分别为1600℃和4h。采用XRD,SEM,TEM等手段表征了粉体和陶瓷样品,讨论了材料的激发光谱和发射光谱。Sr0.99Ce0.01HfO3纳米粉体的激发光谱由2个激发峰构成,峰值分别位于216和309nm;220nm激发的粉体的发射光谱主要由两个发光谱带组成,其峰值分别是398和467nm,分别对应5d→^2F,2和5d→^2F7/2发光跃迁。而309nm激发的粉体的发射光谱只有一个宽带发射峰,峰值位于392nm。Sr0.99Ce0.01HfO3陶瓷样品的激发光谱由一个宽带激发峰构成,峰值位于312nm;发射光谱由一个宽带发射峰构成,峰值位于402nm。  相似文献   

4.
采用氨水共沉淀法制备出 Nd3+,La3+共掺杂氧化钇粉体.将粉体在1 700 ℃真空条件下烧结4h成功制备出高质量的Nd3+,La3+共掺杂氧化钇透明陶瓷.对粉体和透明陶瓷样品的显微结构、光谱特性等用XRD、SEM、UV-Vis、FL等手段进行了表征和研究.结果表明:Nd3+和La3+均匀地溶解于氧化钇晶格之中,从而使氧化钇原有晶格常数变大,有序度下降.1100 ℃煅烧后粉体颗粒大小均匀,近似球形,粒径约60 nm,粉体具有Nd3+特有的荧光发射光谱特性.烧结后,透明陶瓷晶粒均匀,粒径约22.2 μm,晶粒内和晶界处都未见气孔存在:样品(厚度为2 mm)对800 nm光的透过率高达76%;主吸收峰位于821 nm处,吸收峰半高宽为5 nm.4F3/2→4I11/2这组发射跃迁的强度最大,荧光发射主峰位于1078 nm处,适合于作为激光透明陶瓷应用.  相似文献   

5.
分别采用柠檬酸溶胶-凝胶法、半干半湿法和高温固相法制备了CaGdAlO4:Eu^3+荧光粉,并用X线衍射(XRD)分析、场发射扫描电镜(FE—SEM)观察和荧光光谱分析研究了不同制备方法和制备条件对CaGdAlO4:Eu^3+形貌、粒径和发光性质的影响。XRD结果表明,柠檬酸溶胶-胶法、半干半湿法和固相法制备CaGdAlO4:Eu^3+生成纯相的温度分别为900,1200和1400℃。FE—SEM照片显示CCaGdAlO4:Eu^3+颗粒粒径随温度的升高而增大,在同一烧结温度下,粒径大小为柠檬酸溶胶-凝胶法最小,半干半湿法居中,高温固相法最大而且团聚现象严重。以280nm近紫外光激发,CaGdAlO4:Eu^3+发出明亮的橙红色荧光,以Eu^3+的^5D0→^7F2跃迁为主,发光强度随烧结温度的升高而增加,在1400℃烧结温度下,以半干半湿法得到的样品发光最强。室温和低温发射谱中Eu^3+的^5D0→^7Fj,发射峰的数目都表明:Eu^3+在CaGdAlO4中只占据偏离反演中心的一种格位。  相似文献   

6.
以Y2O3,Yb2O3和Er2O3为原料,控制溶液的pH值为3-4左右,采用柠檬酸溶胶-凝胶法制备出Er,Yb∶Y2O3倍半氧化物激光陶瓷前驱粉体。对所得到的粉体进行XRD测试,结果表明最佳煅烧温度为1000℃,并且晶化完全。经过差热-热重分析表明,粉体在1000℃煅烧后不再失重。荧光光谱分析发现,荧光发射的最强峰位于1530 nm处,是Er^3+的4^I13/2-4^I15/2谱相导致的荧光发射。  相似文献   

7.
以Y2O3粗粉、Nd2O3、硝酸和氨水为原料,通过共沉淀法制备了Nd∶Y2O3透明陶瓷纳米粉体,利用热重/差热分析(TG/DTA)、红外光谱(FTIR)、粉末X射线衍射(XRD)、透射电镜(TEM)以及能谱分析(EDS)等方法对合成的Nd∶Y2O3纳米粉体进行了表征。结果表明,在前驱物中添加适量SO4^2-离子能减轻煅烧得到的Nd∶Y2O3纳米粉体粒子的团聚,使Nd∶Y2O3纳米粒子的粒度均匀并呈球形分布。在600~1000℃煅烧3 h所得粉体粒子的粒径在20~40 nm之间,具有较好的分散性。  相似文献   

8.
采用共沉淀法制备了Sr0.99Ce0.01HfO3纳米粉体, 采用常压烧结工艺制备了Sr0.99Ce0.01HfO3陶瓷材料, 烧结温度和烧结时间分别为1600 ℃和4 h. 采用XRD, SEM, TEM等手段表征了粉体和陶瓷样品, 讨论了材料的激发光谱和发射光谱. Sr0.99Ce0.01HfO3纳米粉体的激发光谱由2个激发峰构成, 峰值分别位于216和309 nm;220 nm激发的粉体的发射光谱主要由两个发光谱带组成, 其峰值分别是398和467 nm, 分别对应5d→2F5/2和5d→2F7/2发光跃迁. 而309 nm激发的粉体的发射光谱只有一个宽带发射峰, 峰值位于392 nm. Sr0.99Ce0.01HfO3陶瓷样品的激发光谱由一个宽带激发峰构成, 峰值位于312 nm;发射光谱由一个宽带发射峰构成, 峰值位于402 nm.  相似文献   

9.
以柠檬酸为螯合剂,用溶胶-凝胶法制备碳化硅陶瓷烧结前驱粉体,在烧结助剂含量6%、铝钇摩尔比5/3、1850℃低烧结温度烧结1h条件下,获得了体密度为3.219g/cm3、相对密度为98.3%的高致密烧结体,采用IR、XRD、TG/DTA、SEM/EDS等手段对前驱粉体及烧结体进行了表征,讨论了烧结助剂含量、烧结温度等对碳化硅陶瓷烧结体的收缩率、体密度、失重率等特性的影响。  相似文献   

10.
以Y2O3粗粉、Nd2O3、硝酸和氨水为原料,通过共沉淀法制备了Nd:Y2O3透明陶瓷纳米粉体,利用热重/差热分析(TG/DTA)、红外光谱(FTIR)、粉末X射线衍射(XRD)、透射电镜(TEM)以及能谱分析(EDS)等方法对合成的Nd:Y2O3纳米粉体进行了表征.结果表明,在前驱物中添加适量SO42-离子能减轻煅烧得到的Nd:Y2O3纳米粉体粒子的团聚,使Nd:Y2O3纳米粒子的粒度均匀并呈球形分布.在600~1000℃煅烧3 h所得粉体粒子的粒径在20~40 nm之间,具有较好的分散性.  相似文献   

11.
稀土掺杂钇铝石榴石(YAG)荧光透明陶瓷的制备首先需要合成微纳米尺度的易于在较低温度下形成纯YAG相的粉体。为此,本研究提出了一种新方法来合成铒(Er)掺杂YAG微纳米粉体。该方法是在乙醇溶剂中将铒钇铝的混合硝酸盐与水杨酸甲酯钠反应,形成可溶性的铒钇铝水杨酸甲酯配合物和难溶的硝酸钠。滤去固体硝酸钠后蒸出乙醇,得到混合配合物前驱体。将该前驱体与适量水混合水解,分离出游离的水杨酸甲酯后获得含稀土和铝的溶胶,再经干燥得凝胶,最后经煅烧获得Er:YAG粉体。合成粉体的XRD和SEM结果表明可以在较低的温度下(1000℃)得到纯YAG相产物,颗粒大小为纳米级。该粉体在980 nm泵浦光激发下,呈现出红光、绿光两个发射带,具有典型的上转换发光特征,并且当铒掺杂量为0.08时,绿光的发光强度最强。  相似文献   

12.
采用聚合物前驱体方法,以H5DTPA为配位剂,低温下合成出(La0.57Ce0.1)Sr0.03MnO3纳米颗粒.用TGA-DTA对凝胶前驱体的热分解历程进行分析,采用XRD,高分辨透射显微镜(HRTEM)对凝胶前驱体不同温度下烧结所得粉体的相组成和微观结构进行研究.采用PPMS对(La0.57Ce0.1)Sr0.03MnO3纳米颗粒的磁性能进行了测量.结果表明:凝胶前驱体经600℃烧结2 h可以得到纯钙钛矿型(La0.57Ce0.1)Sr0.03MnO3纳米粉体,平均粒径为40~50 nm;(La0.57Ce0.1)Sr0.03MnO3纳米粉体的居里温度TC为368 K.  相似文献   

13.
采用溶胶-凝胶(Sol-gel)法制备了不同Ti/Ba比的钛酸钡纳米粉体及其陶瓷。通过XRD、SEM和TEM对钛酸钡粉体及陶瓷进行了表征,并测试了陶瓷的介电性能,研究了Ti/Ba比对陶瓷微观结构和介电性能的影响。结果表明:通过溶胶-凝胶工艺制备的纳米粉体主要为立方相钛酸钡,平均粒径约19~33 nm:随Ti/Ba比的增加,钛酸钡纳米粉体平均粒径呈先稍递减后增大的趋势,当粉体平均粒径大于30 nm吋,四方相在混合相中所占比例逐渐增大;Ti/Ba=1.01~1.03时,陶瓷中异常长大的晶粒较多,室温介电常数降低;1300℃烧结2 h的Ti/Ba=1.04的钛酸钡陶瓷具有较好的介电性能。  相似文献   

14.
报道了用反滴定共沉淀法及低温煅烧前驱体的方法制备Ce3+s杂的Lu3Al5O12石榴石陶瓷发光粉体的研究。通过对实验中制备的Lu3Al5O12∶Ce前驱体和煅烧粉体进行的X射线粉末衍射(XRD)和透射电镜(TEM)的测试表征表明,在1000℃烧结热处理2h即可获得完全单一的立方相Lu3Al5O12∶Ce粉体,粉体的平均粒径-30 nm。而随烧结温度的增加,粒径有增大的趋势。在1000℃空气氛热处理的Lu3Al5O12∶0.5%Ce发光粉体具有最强的荧光发射。粉体经干压、等静压成型后,在1800℃经流动的H2气氛常压烧结保温6 h可获得半透明Lu3Al5O12∶0.5%Ce陶瓷。X射线激发下的快分量衰减时间短至十几ns,占发光成分中主要部分的慢分量为-100 ns。  相似文献   

15.
共沉淀法制备Lu3 Al5 O12:Ce陶瓷发光粉体的研究   总被引:1,自引:0,他引:1  
报道了用反滴定共沉淀法及低温煅烧前驱体的方法制备Ce3+摻杂的Lu3Al5O12石榴石陶瓷发光粉体的研究. 通过对实验中制备的Lu3Al5O12∶ Ce前驱体和煅烧粉体进行的X射线粉末衍射(XRD)和透射电镜(TEM)的测试表征表明, 在1000 ℃烧结热处理2 h即可获得完全单一的立方相Lu3Al5O12∶ Ce粉体, 粉体的平均粒径~30 nm. 而随烧结温度的增加, 粒径有增大的趋势. 在1000 ℃空气氛热处理的Lu3Al5O12∶ 0.5%Ce发光粉体具有最强的荧光发射. 粉体经干压、等静压成型后, 在1800 ℃经流动的H2气氛常压烧结保温6 h可获得半透明Lu3Al5O12∶ 0.5%Ce陶瓷. X射线激发下的快分量衰减时间短至十几ns, 占发光成分中主要部分的慢分量为~100 ns.  相似文献   

16.
用提拉法生长了掺铬、钕的钆镓石榴石(Cr^4 ,Nd^3 :GGG)晶体,研究了室温下的吸收光谱和荧光光谱性质,以及晶体中Cr离子浓度对Nd离子光谱性质的影响。应用Judd—ofelt理论计算了强度参数Ωt(t=2,4,6),自发辐射跃迁几率、荧光分支比和辐射辱命等光谱参数。应用McCumber理论计算^4F3/2→^4I11/2能级跃迁的受激发射截面。结果表明:Cr^3 在300~900nm之间较强地增加了吸收截面,尤其是伴随Cr^3 →Nd^3 有效的能量转移。Cr^4 在1.06μm附近的吸收减弱了Nd离子的发射截面。  相似文献   

17.
采用有机凝胶法结合固相烧结技术制备了Sm_0.9St_0.1Al_0.5Mn_0.5O_(3-δ)(SSAM9 155)新犁导电陶瓷.通过TG/DTA,FTIR, XRD,SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制.结果表明,凝胶前驱体在900℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体;高温烧结制得的SSAM9155陶瓷的电导率取决于P型电导,电导率随温度的升高而增大,导电行为符合P型小极化子跳跃机制;随烧结温度的升高或保温时间的延长,SSAM9155陶瓷的电导率和相对密度都先增大后减小,1600℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%),该样品在空气和氢气气氛中850℃时的电导率分别为8.21和1.26 S·cm~(-1),表观活化能分别为0.265和0.465 eV.具有较高电导率的Sr,Mn掺杂的SmAlO_3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   

18.
Eu:GGG纳米荧光粉体制备及其光学特性   总被引:1,自引:0,他引:1  
采用液相共沉淀方法并在不同烧结温度下制得了Eu:GGG荧光粉体。用X射线衍射分析了样品的结构,计算了其晶格常数,为1.2371nm。室温下,测量了Eu:GGG的光致发射光谱、激发光谱和荧光衰减曲线。激发光谱在波长240~287nm的谱带内和393。。处有强的激发,分别来自于Eu^3+O2^-间的电荷迁移态吸收和Eu“的^7F0→^5L6的跃迁吸收,同时在274nm处也出现了Gd^3+的^8S7/2→^6I1的特征吸收。393nm激发下,591nm处的发射峰最强,对应Eu^3+的^5D0→^7F1的磁偶极跃迁,可能由于部分Eu^3+处于反演中心对称格位所致。随着烧结温度升高,Eu:GGG的发光强度增强,这可能由于随着烧结温度升高,样品晶粒尺寸变大,单位体积内被激发的Eu^3+离子数增加引起,而591nm发光的荧光寿命变短,可能是由Eu^3+离子的能量共振传递过程中发光被陷阱捕获所致。  相似文献   

19.
纳米Ca0.8Zn0.2TiO3∶Pr3+, Na+荧光粉的合成和红色发光性质   总被引:1,自引:0,他引:1  
采用溶胶-凝胶法在较低温度下合成了Ca0.8Zn0.2TiO3∶Pr^3+,Na^+纳米荧光粉.金属离子预先分散在溶有柠檬酸的乙二醇溶液中.通过TG-DSC,XRD和SEM对前驱物的分解、晶化和颗粒大小进行了研究.TG-DSC和XRD表明材料的组成随灼烧温度而变化;SEM表明1000 ℃合成材料的粒径在100 nm以下.与高温固相法合成的材料相比,激发光谱主峰发生蓝移,红色发射峰617 nm显著增强.  相似文献   

20.
采用有机凝胶法结合固相烧结技术制备了Sm0.9Sr0.1Al0.5Mn0.5O3-δ (SSAM9155)新型导电陶瓷. 通过TG/DTA, FTIR, XRD, SEM和直流四引线法系统研究了凝胶前驱体的热分解及其相转化过程和烧结体的结构、相稳定性、微观形貌、电导率以及电输运机制. 结果表明, 凝胶前驱体在900 ℃焙烧5 h可以形成完全晶化的四方钙钛矿相纳米粉体; 高温烧结制得的SSAM9155陶瓷的电导率取决于p型电导, 电导率随温度的升高而增大, 导电行为符合p型小极化子跳跃机制; 随烧结温度的升高或保温时间的延长, SSAM9155陶瓷的电导率和相对密度都先增大后减小, 1600 ℃烧结10 h制得的SSAM9155陶瓷具有最高的电导率和相对密度(98%), 该样品在空气和氢气气氛中850 ℃时的电导率分别为8.21和1.26 S•cm-1, 表观活化能分别为0.265和0.465 eV. 具有较高电导率的Sr, Mn掺杂的SmAlO3导电陶瓷有望成为一种新型的固体氧化物燃料电池(SOFC)阳极材料.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号