首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this article, the index of imprimitivity of an irreducible nonnegative matrix in the famous PerronFrobenius theorem is studied within a more general framework, both in a more general tensor setting and in a more natural spectral symmetry perspective. A k-th order tensor has symmetric spectrum if the set of eigenvalues is symmetric under a group action with the group being a subgroup of the multiplicative group of k-th roots of unity. A sufficient condition, in terms of linear equations over the quotient ring, for a tensor possessing symmetric spectrum is given, which becomes also necessary when the tensor is nonnegative, symmetric and weakly irreducible, or an irreducible nonnegative matrix. Moreover, it is shown that for a weakly irreducible nonnegative tensor, the spectral symmetries are the same when either counting or ignoring multiplicities of the eigenvalues. In particular, the spectral symmetry(index of imprimitivity) of an irreducible nonnegative Sylvester matrix is completely resolved via characterizations with the indices of its positive entries. It is shown that the spectrum of an irreducible nonnegative Sylvester matrix can only be 1-symmetric or 2-symmetric, and the exact situations are fully described. With this at hand, the spectral symmetry of a nonnegative two-dimensional symmetric tensor with arbitrary order is also completely characterized.  相似文献   

2.
Complete infinite order approximate symmetry and approximate homotopy symmetry classifications of the Cahn–Hilliard equation are performed and the reductions are constructed by an optimal system of one-dimensional subalgebras. Zero order similarity reduced equations are nonlinear ordinary differential equations while higher order similarity solutions can be obtained by solving linear variable coefficient ordinary differential equations. The relationship between two methods for different order are studied and the results show that the approximate homotopy symmetry method is more effective to control the convergence of series solutions than the approximate symmetry one.  相似文献   

3.
A QMR-based interior-point algorithm for solving linear programs   总被引:5,自引:0,他引:5  
A new approach for the implementation of interior-point methods for solving linear programs is proposed. Its main feature is the iterative solution of the symmetric, but highly indefinite 2×2-block systems of linear equations that arise within the interior-point algorithm. These linear systems are solved by a symmetric variant of the quasi-minimal residual (QMR) algorithm, which is an iterative solver for general linear systems. The symmetric QMR algorithm can be combined with indefinite preconditioners, which is crucial for the efficient solution of highly indefinite linear systems, yet it still fully exploits the symmetry of the linear systems to be solved. To support the use of the symmetric QMR iteration, a novel stable reduction of the original unsymmetric 3×3-block systems to symmetric 2×2-block systems is introduced, and a measure for a low relative accuracy for the solution of these linear systems within the interior-point algorithm is proposed. Some indefinite preconditioners are discussed. Finally, we report results of a few preliminary numerical experiments to illustrate the features of the new approach.  相似文献   

4.
A unified treatment is given for iterative algorithms for the solution of the symmetric linear complementarity problem: $$Mx + q \geqslant 0, x \geqslant 0, x^T (Mx + q) = 0$$ , whereM is a givenn×n symmetric real matrix andq is a givenn×1 vector. A general algorithm is proposed in which relaxation may be performed both before and after projection on the nonnegative orthant. The algorithm includes, as special cases, extensions of the Jacobi, Gauss-Seidel, and nonsymmetric and symmetric successive over-relaxation methods for solving the symmetric linear complementarity problem. It is shown first that any accumulation point of the iterates generated by the general algorithm solves the linear complementarity problem. It is then shown that a class of matrices, for which the existence of an accumulation point that solves the linear complementarity problem is guaranteed, includes symmetric copositive plus matrices which satisfy a qualification of the type: $$Mx + q > 0 for some x in R^n $$ . Also included are symmetric positive-semidefinite matrices satisfying this qualification, symmetric, strictly copositive matrices, and symmetric positive matrices. Furthermore, whenM is symmetric, copositive plus, and has nonzero principal subdeterminants, it is shown that the entire sequence of iterates converges to a solution of the linear complementarity problem.  相似文献   

5.
Criteria for symmetry and boundedness are found for the combined solution set of a system of linear algebraic equations with interval coefficients. It is shown that the problem of the best inner interval estimation of a symmetric solution set can be exactly solved by linear programming methods.  相似文献   

6.
The purpose of this paper is to extend the symmetric representation of the rigid body equations from the group SO (n) to other groups. These groups are matrix subgroups of the general linear group that are defined by a quadratic matrix identity. Their corresponding Lie algebras include several classical semisimple matrix Lie algebras. The approach is to start with an optimal control problem on these groups that generates geodesics for a left-invariant metric. Earlier work by Bloch, Crouch, Marsden, and Ratiu defines the symmetric representation of the rigid body equations, which is obtained by solving the same optimal control problem in the particular case of the Lie group SO (n). This paper generalizes this symmetric representation to a wider class of matrix groups satisfying a certain quadratic matrix identity. We consider the relationship between this symmetric representation of the generalized rigid body equations and the generalized rigid body equations themselves. A discretization of this symmetric representation is constructed making use of the symmetry, which in turn give rise to numerical algorithms to integrate the generalized rigid body equations for the given class of matrix Lie groups. Dedicated to Professor Arieh Iserles on the Occasion of his Sixtieth Birthday.  相似文献   

7.
The finite volume element method is a discretization technique for partial differential equations, but in general case the coefficient matrix of its linear system is not symmetric, even for the self-adjoint continuous problem. In this paper we develop a kind of symmetric modified finite volume element methods both for general self-adjoint elliptic and for parabolic problems on general discretization, their coefficient matrix are symmetric. We give the optimal order energy norm error estimates. We also prove that the difference between the solutions of the finite volume element method and symmetric modified finite volume element method is a high order term.  相似文献   

8.
We study the local convergence of several inexact numerical algorithms closely related to Newton’s method for the solution of a simple eigenpair of the general nonlinear eigenvalue problem $T(\lambda )v=0$ . We investigate inverse iteration, Rayleigh quotient iteration, residual inverse iteration, and the single-vector Jacobi–Davidson method, analyzing the impact of the tolerances chosen for the approximate solution of the linear systems arising in these algorithms on the order of the local convergence rates. We show that the inexact algorithms can achieve the same order of convergence as the exact methods if appropriate sequences of tolerances are applied to the inner solves. We discuss the connections and emphasize the differences between the standard inexact Newton’s method and these inexact algorithms. When the local symmetry of $T(\lambda )$ is present, the use of a nonlinear Rayleigh functional is shown to be fundamental in achieving higher order of convergence rates. The convergence results are illustrated by numerical experiments.  相似文献   

9.
贾旻茜  张宇欣  游雄 《计算数学》2022,44(3):379-395
Sandu和Günther[SIAM J.Numer.Anal.53(2015)17--42]对形如$\dot{y}=\sum\limits_{k=1}^{N}f^{[k]}(y)$的微分方程提出广义加性Runge-Kutta (GARK)方法.本文利用双色有根树导出GARK方法的阶条件,给出辛条件和对称性条件,并构造了三个二阶对称辛GARK (SSGARK)方法和两个四阶SSGARK方法.对三个经典测试问题的数值实验结果显示,与文献中几个非对称或非辛的ARK/GARK方法相比,新的SSGARK方法能更有效地保持Hamilton量.  相似文献   

10.
A new approach for constructing algebraic multilevel preconditioners for mixed finite element methods for second order elliptic problems with tensor coefficients on general geometry is proposed. The linear system arising from the mixed methods is first algebraically condensed to a symmetric, positive definite system for Lagrange multipliers, which corresponds to a linear system generated by standard nonconforming finite element methods. Algebraic multilevel preconditioners for this system are then constructed based on a triangulation of the domain into tetrahedral substructures. Explicit estimates of condition numbers and simple computational schemes are established for the constructed preconditioners. Finally, numerical results for the mixed finite element methods are presented to illustrate the present theory.  相似文献   

11.
B. Cano  A. Durá  n. 《Mathematics of Computation》2003,72(244):1803-1816
Some previous works show that symmetric fixed- and variable-stepsize linear multistep methods for second-order systems which do not have any parasitic root in their first characteristic polynomial give rise to a slow error growth with time when integrating reversible systems. In this paper, we give a technique to construct variable-stepsize symmetric methods from their fixed-stepsize counterparts, in such a way that the former have the same order as the latter. The order and symmetry of the integrators obtained is proved independently of the order of the underlying fixed-stepsize integrators. As this technique looks for efficiency, we concentrate on explicit linear multistep methods, which just make one function evaluation per step, and we offer some numerical comparisons with other one-step adaptive methods which also show a good long-term behaviour.

  相似文献   


12.
Several Krylov subspace iterative methods have been proposed for the approximation of the solution of general non‐symmetric linear systems. Odir is such a method. Here we study the restarted version of Odir for non‐symmetric indefinite linear systems and we prove convergence under certain conditions on the matrix of coefficients. These results hold for all the restarted Krylov methods equivalent to Odir. We also introduce a new truncated Odir method which is proved to converge for a large class of non‐symmetric indefinite linear systems. This new method requires one‐half of the storage of the standard Odir. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
We consider positivity preserving model order reduction of SISO linear systems. Whereas well-established model reduction methods usually do not result in a positive approximation, we show that a symmetry characterization of balanced truncation can be used to preserve positivity after performing balanced truncation. As a consequence, the method is independent of the initial realization and always returns a symmetric reduced model. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
HYBRIDALGEBRAICMULTILEVELPRECONDITIONINGMETHODS¥BaiZhongzhi(白中治)(FudanUniversity,复旦大学,邮编:200433)Abstract:Aclassofhybridalgebr...  相似文献   

15.
We introduce a general definition of refinable Hermite interpolants and investigate their general properties. We also study a notion of symmetry of these refinable interpolants. Results and ideas from the extensive theory of general refinement equations are applied to obtain results on refinable Hermite interpolants. The theory developed here is constructive and yields an easy-to-use construction method for multivariate refinable Hermite interpolants. Using this method, several new refinable Hermite interpolants with respect to different dilation matrices and symmetry groups are constructed and analyzed.

Some of the Hermite interpolants constructed here are related to well-known spline interpolation schemes developed in the computer-aided geometric design community (e.g., the Powell-Sabin scheme). We make some of these connections precise. A spline connection allows us to determine critical Hölder regularity in a trivial way (as opposed to the case of general refinable functions, whose critical Hölder regularity exponents are often difficult to compute).

While it is often mentioned in published articles that ``refinable functions are important for subdivision surfaces in CAGD applications", it is rather unclear whether an arbitrary refinable function vector can be meaningfully applied to build free-form subdivision surfaces. The bivariate symmetric refinable Hermite interpolants constructed in this article, along with algorithmic developments elsewhere, give an application of vector refinability to subdivision surfaces. We briefly discuss several potential advantages offered by such Hermite subdivision surfaces.

  相似文献   


16.
We study structure-preserving algorithms to phase space volume for linear dynamical systems y = Ly for which arbitrarily high order explicit symmetric structure-preserving schemes,i.e. the numerical solutions generated by the schemes satisfy det( ) =ehtrL, where trL is the trace of matrix L, can be constructed. For nonlinear dynamical systems y = f(y) Feng-Shang first-order volume-preserving scheme can be also constructed starting from modified θ- methods and is shown that the scheme is structure-preserving to phase space volume.  相似文献   

17.
This paper studies symmetric tensor decompositions. For symmetric tensors, there exist linear relations of recursive patterns among their entries. Such a relation can be represented by a polynomial, which is called a generating polynomial. The homogenization of a generating polynomial belongs to the apolar ideal of the tensor. A symmetric tensor decomposition can be determined by a set of generating polynomials, which can be represented by a matrix. We call it a generating matrix. Generally, a symmetric tensor decomposition can be determined by a generating matrix satisfying certain conditions. We characterize the sets of such generating matrices and investigate their properties (e.g., the existence, dimensions, nondefectiveness). Using these properties, we propose methods for computing symmetric tensor decompositions. Extensive examples are shown to demonstrate the efficiency of proposed methods.  相似文献   

18.
The Jacobi, Gauss‐Seidel and successive over‐relaxation methods are well‐known basic iterative methods for solving system of linear equations. In this paper, we extend those basic methods to solve the tensor equation , where is an m th‐order n ?dimensional symmetric tensor and b is an n ‐dimensional vector. Under appropriate conditions, we show that the proposed methods are globally convergent and locally r‐linearly convergent. Taking into account the special structure of the Newton method for the problem, we propose a Newton‐Gauss‐Seidel method, which is expected to converge faster than the above methods. The proposed methods can be extended to solve a general symmetric tensor equations. Our preliminary numerical results show the effectiveness of the proposed methods.  相似文献   

19.
In this paper we develop a new theory of adjoint and symmetric methods in the class of general implicit one-step fixedstepsize methods. These methods arise from simple and natural definitions of the concepts of symmetry and adjointness that provide a fruitful basis for analysis. We prove a number of theorems for methods having these properties and show, in particular, that only the symmetric methods possess a quadratic asymptotic expansion of the global error. In addition, we give a very simple test to identify the symmetric methods in practice.  相似文献   

20.
We present an interior-point method for monotone linear complementarity problems over symmetric cones (SCLCP) that is based on barrier functions which are defined by a large class of univariate functions, called eligible kernel functions. This class is fairly general and includes the classical logarithmic function, the self-regular functions, as well as many non-self-regular functions as special cases. We provide a unified analysis of the method and give a general scheme on how to calculate the iteration bounds for the entire class. We also calculate the iteration bounds of both large-step and short-step versions of the method for ten frequently used eligible kernel functions. For some of them we match the best known iteration bound for large-step methods, while for short-step methods the best iteration bound is matched for all cases. The paper generalizes results of Lesaja and Roos (SIAM J. Optim. 20(6):3014–3039, 2010) from P (κ)-LCP over the non-negative orthant to monotone LCPs over symmetric cones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号