首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of nonsimultaneous frequency components into a single virtual pitch was investigated by using a pitch matching task in which a mistuned 4th harmonic (mistuned component) produced pitch shifts in a harmonic series (12 equal-amplitude harmonics of a 155-Hz F0). In experiment 1, the mistuned component could either be simultaneous, stop as the target started (pre-target component), or start as the target stopped (post-target component). Pitch shifts produced by the pre-target components were significantly smaller than those obtained with simultaneous components; in the post-target condition, the size of pitch shifts did not decrease relative to the simultaneous condition. In experiment 2, a silent gap of 20, 40, 80, or 160 ms was introduced between the nonsimultaneous components and the target sound. In the pre-target condition, pitch shifts were reduced to zero for silent gaps of 80 ms or longer; by contrast, a gap of 160 ms was required to eliminate pitch shifts in the post-target condition. The third experiment tested the hypothesis that, when post-target components were presented, the processing of the pitch of the target tone started at the onset of the target, and ended at the gap duration at which pitch shifts decreased to zero. This hypothesis was confirmed by the finding that pitch shifts could not be observed when the target tone had a duration of 410 ms. Taken together, the results of these experiments show that nonsimultaneous components that occur after the onset of the target sound make a larger contribution to the virtual pitch of the target, and over a longer period, than components that precede the onset of the target sound.  相似文献   

2.
When all of the components in a harmonic complex tone are shifted in frequency by delta f, the pitch of the complex shifts roughly in proportion to delta f. For tones with a small number of components, the shift is usually somewhat larger than predicted from pitch theories, which has been attributed to the influence of combination tones [Smoorenburg, J. Acoust. Soc. Am. 48, 924-941 (1970)]. Experiment 1 assessed whether combination tones influence the pitch of complex tones with more than five harmonics, by using noise to mask the combination tones. The matching stimulus was a harmonic complex. Test complexes were bandpass filtered with passbands centered on harmonic numbers 5 (resolved), 11 (intermediate), or 16 (unresolved) and fundamental frequencies (FOs) were 100, 200, or 400 Hz. For the intermediate and unresolved conditions, the matching stimuli were filtered with the same passband to minimize differences in the excitation patterns of the test and matching stimuli. For the resolved condition, the matching stimulus had a passband centered above that of the test stimulus, to avoid common partials. For resolved and intermediate conditions, pitch shifts were observed that could generally be predicted from the frequencies of the partials. The shifts were unaffected by addition of noise to mask combination tones. For the unresolved condition, no pitch shift was observed, which suggests that pitch is not based on temporal fine structure for stimuli containing only high unresolved harmonics. Experiment 2 used three-component complexes resembling those of Schouten [J. Acoust. Soc. Am. 34, 1418-1424 (1962)]. Nominal harmonic numbers were 3, 4, 5 (resolved), 8, 9, 10 (intermediate), or 13, 14, 15 (unresolved) and F0s were 50, 100, 200, or 400 Hz. Clear shifts in the matches were found for all conditions, including unresolved. For the latter, subjects may have matched the "center of gravity" of the excitation patterns of the test and matching stimuli.  相似文献   

3.
These experiments address the following issues. (1) When two complex tones contain different harmonics, do the differences in timbre between them impair the ability to discriminate the pitches of the tones? (2) When two complex tones have only a single component in common, and that component is the most discriminable component in each tone, is the frequency discrimination of the component affected by differences in residue pitch between the two tones? (3) How good is the pitch discrimination of complex tones with no common components when each tone contains multiple harmonics, so as to avoid ambiguity of pitch? (4) Is the pitch discrimination of complex tones with common harmonics impaired by shifting the component frequencies to nonharmonic values? In all experiments, frequency difference limens (DLCs) were measured for multiple-component complex tones, using an adaptive two-interval, two-alternative, forced-choice task. Three highly trained subjects were used. The main conclusions are as follows. (1) When two tones have the first six harmonics in common, DLCs are larger when the upper harmonics are different than when the upper harmonics are in common or are absent. It appears that differences in timbre impair DLCs. (2) Discrimination of the frequency of a single common partial in two complex tones is worse when the two tones have different residue pitches than when they have the same residue pitch. (3) DLCs for complex tones with no common harmonics are generally larger than those for complex tones with common harmonics. For the former, large individual differences occur, probably because subjects are affected differently by differences in timbre. (4) DLCs for harmonic complex tones are smaller than DLCs for complex tones in which the components are mistuned from harmonic values. This can probably be attributed to the less distinct residue pitch of the inharmonic complexes, rather than to reduced discriminability of partials. Overall, the results support the idea that DLCs for complex tones with common harmonics depend on residue pitch comparisons, rather than on comparisons of the pitches of partials.  相似文献   

4.
The adaptation of a complex and pure-tone pitch was examined, using an adaptation stimulus composed of components of low harmonic number and test stimuli composed of components of high harmonic number, in order to examine separately the effects of pure-tone and complex pitch adaptation. The test stimulus either had the same fundamental as that of the adaptation stimulus, or it had a fundamental lower than that of the adaptation stimulus. Adaptation was measured using a pitch matching method. The adaptation and test stimuli were presented to one ear, and a pure-tone matching stimulus was presented to the opposite ear. Adaptation generally shifted the complex pitch of the test stimulus to a lower pitch. The component pitches, on the other hand, did not change, or shifted upwards slightly. The downward complex pitch changes were consistent with the adaptation of a central complex pitch channel.  相似文献   

5.
Trained singers (TS) generally demonstrate accurate pitch matching, but this ability varies within the general population. Pitch-matching accuracy, given increasing silence intervals of 5, 15, and 25 seconds between target tones and vocal matches, was investigated in TS and untrained individuals. A relationship between pitch discrimination and pitch matching was also examined. Thirty-two females (20–30 years) were grouped based on individual vocal training and performance in an immediate pitch-matching task. Participants matched target pitches following time delays, and completed a pitch discrimination task, which required the classification of two tones as same or different. TS and untrained accurate participants performed comparably on all pitch-matching tasks, while untrained inaccurate participants performed significantly less accurately than the other two groups. Performances declined across groups as intervals of silence increased, suggesting degradation of pitch matching as pitch memory was taxed. A significant relationship between pitch discrimination and pitch matching was revealed across participants.  相似文献   

6.
It is unclear whether the perceptual segregation of a mistuned harmonic from a periodic complex tone depends specifically on harmonic relations between the other components. A procedure used previously for harmonic complexes [W. M. Hartmann et al., J. Acoust. Soc. Am. 88, 1712-1724 (1990)] was adapted and extended to regular inharmonic complexes. On each trial, subjects heard a 12-component complex followed by a pure tone in a continuous loop. In experiment 1, a mistuning of +/- 4% was applied to one of the components 2-11. The complex was either harmonic, frequency shifted, or spectrally stretched. Subjects adjusted the pure tone to match the pitch of the mistuned component. Near matches were taken to indicate segregation, and were almost as frequent in the inharmonic conditions as in the harmonic case. Also, small but consistent mismatches, pitch shifts, were found in all conditions. These were similar in direction and size to earlier findings for harmonic complexes. Using a range of mistunings, experiment 2 showed that the segregation of components from regular inharmonic complexes could be sensitive to mistunings of 1.5% or less. These findings are consistent with the proposal that aspects of spectral regularity other than harmonic relations can also influence auditory grouping.  相似文献   

7.
The relation between the auditory brain stem potential called the frequency-following response (FFR) and the low pitch of complex tones was investigated. Eleven complex stimuli were synthesized such that frequency content varied but waveform envelope periodicity was constant. This was accomplished by repeatedly shifting the components of a harmonic complex tone upward in frequency by delta f of 20 Hz, producing a series of six-component inharmonic complex tones with constant intercomponent spacing of 200 Hz. Pitch-shift functions were derived from pitch matches for these stimuli to a comparison pure tone for each of four normal hearing adults with extensive musical training. The FFRs were recorded for the complex stimuli that were judged most divergent in pitch by each subject and for pure-tone signals that were judged equal in pitch to these complex stimuli. Spectral analyses suggested that the spectral content of the FFRs elicited by the complex stimuli did not vary consistently with component frequency or the first effect of pitch shift. Furthermore, complex and pure-tone signals judged equal in pitch did not elicit FFRs of similar spectral content.  相似文献   

8.
Three different waveforms were generated from the same component frequencies by setting the phase of the components so they were either homophasic (all component sinusoids start at 0 degree), diphasic (sinusoids alternate between -45 degrees and + 45 degrees), or heterophasic (starting phase randomly selected). Listeners were asked to rate the saliency of all periodicity pitches they could detect in stimuli which contained 12 or more components at frequencies above the region where pitches were perceived . A major finding was that the highest ratings of fundamental frequency (f1) pitch "strength" were always obtained for homophasic waveforms, which among the test stimuli have the most abrupt envelope fluctuations. In contrast, diphasic and heterophasic waveforms, which have smoother envelopes, yielded lower pitch strength estimates at f1 and higher ratings two octaves above the fundamental. These data indicate that information concerning the stimulus waveform envelope influences the relative prominence of competing pitches evoked by periodicity pitch stimuli. However, no one-to-one correspondence between pitch and waveform periodicity is apparent.  相似文献   

9.
Ciocca and Darwin [V. Ciocca and C. J. Darwin, J. Acoust. Soc. Am. 105, 2421-2430 (1999)] reported that the shift in residue pitch caused by mistuning a single harmonic (the fourth out of the first 12) was the same when the mistuned harmonic was presented after the remainder of the complex as when it was simultaneous, even though subjects were asked to ignore the pure-tone percept. The present study tried to replicate this result, and investigated the role of the presence of the nominally mistuned harmonic in the matching sound. Subjects adjusted a "matching" sound so that its pitch equaled that of a subsequent 90-ms complex tone (12 harmonics of a 155-Hz F0), whose mistuned (+/-3%) third harmonic was presented either simultaneously with or after the remaining harmonics. In experiment 1, the matching sound was a harmonic complex whose third harmonic was either present or absent. In experiments 2A and 2B, the target and matching sound had nonoverlapping spectra. Pitch shifts were reduced both when the mistuned component was nonsimultaneous, and when the third harmonic was absent in the matching sound. The results indicate a shorter than originally estimated time window for obligatory integration of nonsimultaneous components into a virtual pitch.  相似文献   

10.
This study evaluated the reliability of pitch judgments as a basic step toward increasing interrater and intrarater reliability of multidimensional perceptual judgments of the speaking voice. Forty-five undergraduate university students studying speech/language pathology made piano-to-piano tone pitch matches and vowel-to-piano pitch matches using a computer software program. The mean percentage correct of piano-to-piano tone matches was 91.3% and of vowel-to-piano matches was 75.6%. Subjects who scored 100% correct were significantly faster at the pitch matching task. Further research of perceptual judgments of pitch and its contribution to multidimensional rating tasks is warranted.  相似文献   

11.
Psychoacoustical tuning curves and interaural pitch matches were measured in a listener with a unilateral, moderately severe hearing loss of primarily cochlear origin below 2 kHz. The psychoacoustical tuning curves, measured in a simultaneous-masking paradigm, were obtained at 1 kHz for probe levels of 4.5-, 7-, and 13-dB SL in the impaired ear, and 7-dB SL in the impaired ear, and 7-dB SL in the normal ear. Results show that as the level of the probe increased from 4.5- to 13-dB SL in the impaired ear, (1) the frequency location of the tip of the tuning curve decreased from approximately 2.85 to 2.20 kHz and (2) the lowest level of the masker required to just mask the probe increased from 49- to 83-dB SPL. The tuning curve in the normal ear was comparable to data from other normal listeners. The interaural pitch matches were measured from 0.5 to 6 kHz at 10-dB SL in the impaired ear and approximately 15- to 20-dB SL in the normal ear. Results show reasonable identity matches (e.g., a 500-Hz tone in the impaired ear was matched close to a 500-Hz tone in the normal ear), although variability was significantly greater for pitch matches below 2 kHz. The results are discussed in terms of their implications for models of pitch perception.  相似文献   

12.
Three experiments investigated how the onset asynchrony and ear of presentation of a single mistuned frequency component influence its contribution to the pitch of an otherwise harmonic complex tone. Subjects matched the pitch of the target complex by adjusting the pitch of a second similar but strictly periodic complex tone. When the mistuned component (the 4th harmonic of a 155 Hz fundamental) started 160 ms or more before the remaining harmonics but stopped simultaneously with them, it made a reduced contribution to the pitch of the complex. It made no contribution if it started more than 300 ms before. Pitch shifts and their reduction with onset time were larger for short (90 ms) sounds than for long (410 ms). Pitch shifts were slightly larger when the mistuned component was presented to the same ear as the remaining 11 in-tune harmonics than to the opposite ear. Adding a "captor" complex tone with a fundamental of 200 Hz and a missing 3rd harmonic to the contralateral ear did not augment the effect of onset time, even though the captor was synchronous with the mistuned harmonic, the mistuned component was equal in frequency to the missing 3rd harmonic of the captor complex tone and it was played to the same ear as the captor. The results show that a difference in onset time can prevent a resolved frequency component from contributing to the pitch of a complex tone even though it is present throughout that complex tone.  相似文献   

13.
When a partial of a periodic complex is mistuned, its change in pitch is greater than expected. Two experiments examined whether these partial-pitch shifts are related to the computation of global pitch. In experiment 1, stimuli were either harmonic or frequency-shifted (25% of F0) complexes. One partial was mistuned by +/- 4% and played with leading and lagging portions of 500 ms each, relative to the other components (1 s), in both monaural and dichotic contexts. Subjects indicated whether the mistuned partial was higher or lower in pitch when concurrent with the other components. Responses were positively correlated with the direction of mistuning in all conditions. In experiment 2, stimuli from each condition were compared with synchronous equivalents. Subjects matched a pure tone to the pitch of the mistuned partial (component 4). The results showed that partial-pitch shifts are not reduced in size by asynchrony. Similar asynchronies are known to produce a near-exclusion of a mistuned partial from the global-pitch computation. This mismatch indicates that global and partial pitch are derived from different processes. The similarity of the partial-pitch shifts observed for harmonic and frequency-shifted stimuli suggests that they arise from a grouping mechanism that is sensitive to spectral regularity.  相似文献   

14.
Complex tone bursts were bandpass filtered, 22nd-30th harmonic, to produce waveforms with five regularly occurring envelope peaks ("pitch pulses") that evoked pitches associated with their repetition period. Two such tone bursts were presented sequentially and separated by an interpulse interval (IPI). When the IPI was varied, the pitch of the whole sequence was shifted by between +2% and -5%. When the IPI was greater than one period, little effect was seen. This is consistent with a pitch mechanism employing a long integration time for continuous stimuli that resets in response to temporal discontinuities of greater than about one period of the waveform. Similar pitch shifts were observed for fundamental frequencies from 100 to 250 Hz. The pitch shifts depended on the IPI duration relative to the period of the complex, not on the absolute IPI duration. The pitch shifts are inconsistent with the autocorrelation model of Meddis and O'Mard [J. Acoust. Soc. Am. 102, 1811-1820 (1997)], although a modified version of the weighted mean-interval model of Carlyon et al. [J. Acoust. Soc. Am. 112, 621-633 (2002)] was successful. The pitch shifts suggest that, when two pulses occur close together, one of the pulses is ignored on a probabilistic basis.  相似文献   

15.
The perceptual fusion of harmonics is often assumed to result from the operation of a template mechanism that is also responsible for computing global pitch. This dual-role hypothesis was tested using frequency-shifted complexes. These sounds are inharmonic, but preserve a regular pattern of equal component spacing. The stimuli had a nominal fundamental (F0) frequency of 200 Hz (+/- 20%), and were frequency shifted either by 25.0% or 37.5% of F0. Three consecutive components (6-8) were removed and replaced with a sinusoidal probe, located at one of a set of positions spanning the gap. On any trial, subjects heard a complex tone followed by an adjustable pure tone in a continuous loop. Subjects were well able to match the pitch of the probe unless it corresponded with a position predicted by the spectral pattern of the complex. Peripheral factors could not account for this finding. In contrast, hit rates were not depressed for probes positioned at integer multiples of the F0(s) corresponding to the global pitch(es) of the complex, predicted from previous data [Patterson, J. Acoust. Soc. Am. 53, 1565-1572 (1973)]. These findings suggest that separate central mechanisms are responsible for computing global pitch and for the perceptual grouping of partials.  相似文献   

16.
Psychophysical experiments show that the pitch of a short sine wave tone depends upon the amplitude envelope of the tone. Subjects find that the pitch of an exponentially decaying tone (1dB/ms) is higher than the pitch of a (20-ms) rectangularly gated tone of equal frequency. The percentage difference in frequency required to produce equal pitches with the two envelopes depends upon frequency fo: 2.6% at fo = 412 Hz, 1.4% at fo = 825 Hz, 1% at fo = 1650 Hz, and 0.7% at fo = 3300 Hz. The pitch change is insensitive to the relative intensities of the two tones. The spectra of tones with the two different envelopes suggest no obvious explanation for the pitch change. However, the weighted time-varying spectra for tones with two different envelopes evolve differently with time. Alternatively the pitch change can be derived from a modified version of the auditory phase theory of Huggins.  相似文献   

17.
Buus and Florentine [J. Assoc. Res. Otolaryngol. 3, 120-139 (2002)] have proposed that loudness recruitment in cases of cochlear hearing loss is caused partly by an abnormally large loudness at absolute threshold. This has been called "softness imperception." To evaluate this idea, loudness-matching functions were obtained using tones at very low sensation levels. For subjects with asymmetrical hearing loss, matches were obtained for a single frequency across ears. For subjects with sloping hearing loss, matches were obtained between tones at two frequencies, one where the absolute threshold was nearly normal and one where there was a moderate hearing loss. Loudness matching was possible for sensation levels (SLs) as low as 2 dB. When the fixed tone was presented at a very low SL in an ear (or at a frequency) where there was hearing impairment, it was matched by a tone with approximately the same SL in an ear (or at a frequency) where hearing was normal (e.g., 2 dB SL matched 2 dB SL). This relationship held for SLs up to 4-10 dB, depending on the subject. These results are not consistent with the concept of softness imperception.  相似文献   

18.
The perception of pitch for pure tones with frequencies falling inside low- or high-frequency dead regions (DRs) was examined. Subjects adjusted a variable-frequency tone to match the pitch of a fixed tone. Matches within one ear were often erratic for tones falling in a DR, indicating unclear pitch percepts. Matches across ears of subjects with asymmetric hearing loss, and octave matches within ears, indicated that tones falling within a DR were perceived with an unclear pitch and/or a pitch different from "normal" whenever the tones fell more than 0.5 octave within a low- or high-frequency DR. One unilaterally impaired subject, with only a small surviving region between 3 and 4 kHz, matched a fixed 0.5-kHz tone in his impaired ear with, on average, a 3.75-kHz tone in his better ear. When asked to match the 0.5-kHz tone with an amplitude-modulated tone, he adjusted the carrier and modulation frequencies to about 3.8 and 0.5 kHz, respectively, suggesting that some temporal information was still available. Overall, the results indicate that the pitch of low-frequency tones is not conveyed solely by a temporal code. Possibly, there needs to be a correspondence between place and temporal information for a normal pitch to be perceived.  相似文献   

19.
A random-interval pulse train or wide-band noise when delayed (tau) and added back to itself (cos+) produces a stimulus with a consinusoidally varying (or trippled) power spectrum. The spacing between the peaks in the spectrum is equal to the reciprocal of the delay (1/tau). If the stimulus is delayed and added back at 180 degrees phase reversal (cos-), then a cosinusoidally varying power spectrum is generated whose spectral peaks are separated by 1/tau, but whose peaks are displaced by 1/2tau relative to the power spectrum of the cos+ stimulus generated with the same day, tau. These stimuli yield a pitch, such that the pitch of the cos+ stimulus is equal to approximately 1/tau and the pitches of the cos- stimuli are equal to approximately 0.9/tau and 1.1/tau. These pitch matching results were studied using a variety of matching stimuli and conditions. Following the identification of the pitches, a method of limits and a same-different procedure were used to study the pitch discriminability of both the cos+ and cos- stimuli. Delays (tau) ranging from 1 to 10 ms were studied covering a pitch range of 90-1100 Hz. The pitch discriminations associated with the cos+ and cos- stimuli were essentially the same for both the random-interval pulse train and the wide-band stimuli. These pitch-discrimination results are compared to those associated with a periodic pulse train. The research is also discussed in terms of discriminations of delayed sounds in reverberant environments. These are consistent with assumptions concerning the autocorrelation of the rippled stimuli within the dominant frequency region for pitch perception.  相似文献   

20.
Envelope-induced pitch shifts were measured for exponentially decaying complex tones consisting of two sinusoidal components with frequencies f1 = nf0 + 50 Hz and f2 = (n + 1) f0 + 50 Hz, where n equals 3, 4, or 5 and exponential decay rates were 0, 0.5, 1, and 2 dB/ms. Four subjects adjusted a sinusoidal comparison tone to match the virtual pitch of the (missing) fundamental and the pitches of the lower and upper partials f1 and f2. Pitch shifts for f1 are generally less, and pitch shifts for f2 always greater, than envelope-induced shifts observed in isolated sinusoidal tones of comparable frequency and envelope decay rate. Pitch-shift functions for virtual pitch are similar in magnitude and shape to average pitch-shift functions of the partials, which supports the idea that virtual pitch depends on spectral pitch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号