首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the finite-difference solution of the unsteady problem of natural convection in a triangular enclosure based on the use of physical variables: velocity components, pressure, and temperature.Translated from Izvestiya Akademii Nauk SSSR, Uekhanika Shidkosti i Gaza, No. 5, pp. 169–173, September–October, 1985.  相似文献   

2.
Siddheshwar  P. G.  Siddabasappa  C. 《Meccanica》2020,55(9):1763-1780

Stability analysis of free convection in a liquid-saturated sparsely-packed porous medium with local-thermal-non-equilibrium (LTNE) effect is presented. For the vertical boundaries free–free, adiabatic and rigid–rigid, adiabatic are considered while for horizontal boundaries it is the stress-free, isothermal and rigid–rigid, isothermal boundary combinations we consider. From the linear theory, it is apparent that there is advanced onset of convection in a shallow enclosure followed by that in square and tall enclosures. Asymptotic analysis of the thermal Rayleigh number for small and large values of the inter-phase heat transfer coefficient is reported. Results of Darcy–Bénard convection (DBC) and Rayleigh–Bénard convection can be obtained as limiting cases of the study. LTNE effect is prominent in the case of Brinkman–Bénard convection compared to that in DBC. Using a multi-scale method and by performing a non-linear stability analysis the Ginzburg–Landau equation is derived from the five-mode Lorenz modal. Heat transport is estimated at the lower plate of the channel. The effect of the Brinkman number, the porous parameter and the inter-phase heat transfer coefficient is to favour delayed onset of convection and thereby enhanced heat transport while the porosity-modified ratio of thermal conductivities shows the opposite effect.

  相似文献   

3.
Unsteady three-dimensional conjugate heat and mass transfer in an enclosure having finite thickness heat-conducting walls has been analyzed numerically. The governing unsteady, three-dimensional flow, energy and contaminant transport equations for the gas cavity and unsteady heat conduction equation for solid walls, written in dimensionless terms of the vector potential functions, the vorticity vector, the temperature and the concentration, have been solved using an iterative implicit finite-difference method. Main attention was paid to the effects of the Rayleigh number, buoyancy ratio and the dimensionless time on the flow structure and heat and mass transfer regimes. It should be noted that the dominant cause of the oscillations in the dimensionless time dependences of the average Nusselt number on the heat source surface and the average Sherwood number on the contaminant source surface at Ra>5?105 is the mutual influence of the analyzed object geometry and the thermo-diffusivity impact on the flow. The change in the buoyancy ratio can lead to the essential modifications of the flow, temperature and concentration fields owing to the significant influence of the concentration gradient.  相似文献   

4.
A technique of the state space approach and the inversion of the Laplace transform method are applied to dimensionless equations of an unsteady one-dimensional boundary-layer flow due to heat and mass transfer through a porous medium saturated with a viscoelastic fluid bounded by an infinite vertical plate in the presence of a uniform magnetic field is described. Complete analytical solutions for the temperature, concentration, velocity, and induced magnetic and electric fields are presented. The inversion of the Laplace transforms is carried out by using a numerical approach. The proposed method is used to solve two problems: boundary-layer flow in a viscoelastic fluid near a vertical wall subjected to the initial conditions of a stepwise temperature and concentration and viscoelastic fluid flow between two vertical walls. The solutions are found to be dependent on the governing parameters including the Prandtl number, the Schmidt number, the Grashof number, reaction rate coefficient, viscoelastic parameter, and permeability of the porous medium. Effects of these major parameters on the transport behavior are investigated methodically, and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, concentration, and induced magnetic and electric field distributions, as well as the local skin-friction coefficient and the local Nusselt and Sherwood numbers.  相似文献   

5.
A boundary layer analysis was carried out to investigate the coupled phenomena of heat and mass transfer by natural convection from concentrated heat and mass sources embedded in saturated porous media. Both line and point source problems were treated. The boundary layer equations based on Darcy's law and Boussinesq approximation were solved by means of similarity transformation to obtain the details of velocity, temperature and concentration distributions above a concentrated heat source. Two important parameters, namely the Lewis number Le and the buoyancy ratioN were identified to conduct a series of numerical integrations. For the case of small Le, a substance diffuses further away from the plume centerline, such that the mass transfer influences both velocity and temperature profiles over a wide range. For large Le, on the other hand, the substance diffuses within a narrow range along the centerline. Naturally, the influence of mass transfer is limited to the level of the centerline velocity, so that a peaky velocity profile appears for positiveN whereas a velocity defect emerges along the centerline for negativeN. For such cases of large Le, the temperature profiles are found to be fairly insensitive to Le.  相似文献   

6.
The coupled streamfuction–temperature equations governing the Darcian flow and convection process in a fluid-saturated porous enclosure with an isothermal sinusoidal bottom sun face, has been numerically analyzed using a finite element method (FEM). No restrictions have been imposed on the geometrical non-linearity arising from the parameters like wave amplitude (a), number of waves per unit length (N), wave phase (Φ), aspect ratio (A) and also on the flow driving parameter Rayleigh number (Ra). The numerical simulations for varying values of Ra bring about interesting flow features, like the transformation of a unicellular flow to a multicellular flow. Both with increasing amplitude and increasing number of waves per unit length, owing to the shift in the separation and reattachment points, a row–column pattern of multicellular flow transforms to a simple row of multicellular flow. A cycle of n celluar and n+1 cellular flows, with the flow in adjacent cells in the opposite direction, periodically manifest with phase varying between 0 and 360°. The global heat transfer into the system has been found to decrease with increasing amplitude and increasing number of waves per unit length. Only marginal changes in the global heat flux are observed, either with increasing Ra or varying Φ. Effectively, sinusoidal bottom surface undulations of the isothermal wall of a porous enclosure reduces the heat transfer into the system. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
This study looks at MHD natural convection flow and heat transfer in a laterally heated enclosure with an off-centred partition. Governing equations in the form of vorticity–stream function formulation are solved using the polynomial differential quadrature (PDQ) method. Numerical results are obtained for various values of the partition location, Rayleigh, Prandtl and Hartmann numbers. The results indicate that magnetic field significantly suppresses flow, and thus heat transfer, especially for high Rayleigh number values. The results also show that the x-directional magnetic field is more effective in damping convection than the y-directional magnetic field, and the average heat transfer rate decreases with an increase in the distance of the partition from the hot wall. The average heat transfer rate decreases up to 80% if the partition is placed at the midpoint and an x-directional magnetic field is applied. The results also show that flow and heat transfer have little dependence on the Prandtl number.  相似文献   

8.
Numerical methods are used to investigate the transient, forced convection heat/mass transfer from a finite flat plate to a steady stream of viscous, incompressible fluid. The temperature/concentration inside the plate is considered uniform. The heat/mass balance equations were solved in elliptic cylindrical coordinates by a finite difference implicit ADI method. These solutions span the parameter ranges 10 Re 400 and 0.1 Pr 10. The computations were focused on the influence of the product (aspect ratio) × (volume heat capacity ratio/Henry number) on the heat/mass transfer rate. The occurrence on the plates surface of heat/mass wake phenomena was also studied.  相似文献   

9.
In this paper, unsteady heat transfer and fluid flow characteristics in an enclosure are investigated. The enclosure consists of two vertical wavy and two horizontal straight walls. The top and the bottom walls are considered adiabatic. Two wavy walls are kept isothermal and their boundaries are approximated by a cosine function. Governing equations including continuity, momentum and energy were discretized using the finite-volume method and solved by SIMPLE method in curvilinear coordinate. Simulation was carried out for a range of Grashof number Gr = 103–106, Prandtl number Pr = 0.5–4.0, wave ratio A (defined by amplitude/wavelength) 0.0–0.35 and aspect ratio W (defined by average width/wavelength) 0.5–1.0. Streamlines and isothermal lines are presented to corresponding flow and thermal fields. Local and average Nusselt number distributions are presented. The obtained results are in good agreement with available numerical and experimental data.  相似文献   

10.
11.
Magnetohydrodynamic natural convection heat transfer from radiate vertical surfaces with fluid suction or injection is considered. The nonsimilarity parameter is found to be the conductive fluid injection or suction along the streamwise coordinate = V{4x/2 g(T w T )}1/4. Three dimensionless parameters had been found to describe the problem: the magnetic influence number N = B 2 y /V 2, the radiation-conduction parameter R d = k R /4aT 3 , and the Gebhart number Ge x = gx/cp to represent the effect of the viscous dissipation. It is found that increasing the magnetic field strength causes the velocity and the heat transfer rates inside the boundary layer to decrease. Its apparent that increasing the radiation-conduction parameter decreases the velocity and enhances the heat transfer rates. The Gebhart number, i.e, the viscous dissipation had no effect on the present problem.Nomenclature a Stefan-Boltzmann constant - B y Magnetic field flux density Wb/m2 - Cf x Local skin friction factor - c p Specific heat capacity - f Dimensionless stream function - Ge x Gebhart number, gx/cp - g Gravitational acceleration - k Thermal Conductivity - L Length of the plate - N Magnetic influence number, B 2 y /V 2 - p Pressure - Pr Prandtl number - q r Radiative heat flux - q w (x) Local surface heat flux - Q w (x) Dimensionless Local surface heat flux - R d Planck number (Radiation-Conduction parameter), k R /4aT 3 - T Temperature - T Free stream temperature - T w Wall temperature - u, v Velocity components in x- and y-directions - V Porous wall suction or injection velocity - V w Porous wall suction or injection velocity - x, y Axial and normal coordinates - Thermal diffusivity Greek symbols R Roseland mean absorption coefficient, 4/3R d - Coefficient of thermal expansion - Nonsimilarity parameter, V{4x/2 g(T w T )}1/4 - Peseudo-similarity variable - Dimensionless temperature - w Ratio of surface temperature to the ambient temperature, T w /T - Dynamice viscosity - Kinemtic viscosity - Fluid density - Electrical conductivity - w Local wall shear stress - Dimensional stream function  相似文献   

12.
Laminar natural convection heat transfer in inclined fluid layers divided by a partition with finite thickness and conductivity is studied analytically and numerically. The governing equations for the fluid layers are solved analytically in the limit of a thin layered system with constant flux boundary conditions. The study covers of the range of Ra from 103 to 107, from 0° to 180° and the thermal conductivity ratio of partition to fluid ratioK from 10–2 to 106. The Prandtl number was 0.72 (for air). Results are obtained in terms of an overall Nusselt number as a function of Rayleigh number, angle of inclination of the system, mid layer thickness, and mid layer thermal conductivity. The critical Rayleigh number for the onset of convection in a bottom-heated horizontal system is predicted. The results are compared with the numerical results obtained by solving the complete system of governing equations, using SIMPLER method, as well as with the limiting cases in the literature.  相似文献   

13.
The problem of steady, laminar, simultaneous heat and mass transfer by natural convection flow over a vertical permeable plate embedded in a uniform porous medium in the presence of inertia and thermal dispersion effects is investigated for the case of linear variations of both the wall temperature and concentration with the distance along the plate. Appropriate transformations are employed to transform the governing differential equations to a non-similar form. The transformed equations are solved numerically by an efficient implicit, iterative, finite-difference scheme. The obtained results are checked against previously published work on special cases of the problem and are found to be in good agreement. A parametric study illustrating the influence of the porous medium effects, heat generation or absorption, wall suction or injection, concentration to thermal buoyancy ratio, thermal dispersion parameter, and the Schmidt number on the fluid velocity, temperature and concentration as well as the skin-friction coefficient and the Nusselt and Sherwood numbers is conducted. The results of this parametric study are shown graphically and the physical aspects of the problem are highlighted and discussed.  相似文献   

14.
15.
16.
Transient natural convection boundary layer flow of an incompressible viscous fluid past an impulsively moving semi- infinite vertical cylinder is considered. The temperature and concentration of the cylinder surface are taken to be uniform. The unsteady, nonlinear and coupled governing equations of the flow are solved using an implicit finite difference scheme. The finite difference scheme is unconditionally stable and accurate. Numerical results are presented with various sets of parameters for both air and water. Transient effects of velocity, temperature and concentration profiles are analyzed. Local and average skin friction, rates of heat and mass transfer are shown graphically. Received on 1 November 1999  相似文献   

17.
 The problem of combined heat and mass transfer by natural convection over a permeable cone embedded in a uniform porous medium in the presence of an external magnetic field and internal heat generation or absorption effects is formulated. The cone surface is maintained at either constant temperature and constant concentration or uniform heat and mass fluxes. In addition, the cone surface is assumed permeable in order to allow for possible fluid wall suction or blowing. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved numerically by an implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement between the results is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the temperature and concentration profiles as well as the local Nusselt number and the Sherwood number is illustrated graphically to show special trends of the solutions. Received on 5 June 2000 / Published online: 29 November 2001  相似文献   

18.
Simultaneous heat and mass transfer in buoyancy-induced laminar boundary-layer flow along a vertical plate is studied for any ratio of the solutal buoyancy force to the thermal buoyancy force by using a new similarity transformation. The effects of the buoyancy ratio and Lewis number on the rates of heat and mass transfer are presented explicitly for most practical gaseous solutions (Pr=0.7, 0.21≤Sc≤2.1) and aqueous solutions (Pr=7, 140≤Sc≤1400). Very accurate correlations of the mass transfer and heat transfer rates are developed for the cases of single and combined buoyancy forces.  相似文献   

19.
Boundary-layer analysis is performed for free convection flow over a hot horizontal surface embedded in a porous medium saturated with a gas of variable properties. The variable gas properties are accounted for via the assumption that thermal conductivity and dynamic viscosity are proportional to temperature. A similarity solution is shown to exist for the case of constant surface temperature. Numerical results for the stream function, horizontal velocity, and temperature profiles within the boundary layer as well as for the mass of entrained gas, surface slip velocity, and heat transfer rate at different values of the wall-temperature parameter are presented. Asymptotic solutions for large heating are also available to support the numerical work.  相似文献   

20.
The steady free convection boundary layer flow of non-Darcy fluid along an isothermal vertical cylinder embedded in a saturated porous medium using the Ergun model has been studied. The partial differential equations governing the flow have been solved numerically using an implicit finite-difference scheme developed by Keller. It is found that the heat transfer is strongly affected by the modified Grashof number which characterizes the non-Darcy fluid, and the curvature parameter. Also the heat transfer is found to be more than that of the flat plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号