首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a simple phenomenological model describing composite crystals, constructed from two parallel sets of periodic inter-penetrating chains. In the harmonic approximation and neglecting thermal fluctuations we find the eigenmodes of the system. It is shown that at high frequencies there are two longitudinal sound modes with standard attenuation, while in the low frequency region there is one propagating sound mode and an over-damped phase mode. The crossover between these two regions is analyzed numerically and the dynamical structure factor is calculated. It is shown that the qualitative features of the experimentally observed spectra can be consistently described by our model. Received 28 November 2001 and Received in final form 23 January 2002  相似文献   

2.
The dynamics of the decagonal AlNiCo phase has been investigated on a single-grain quasicrystalline sample using inelastic neutron scattering. The decagonal structure can be viewed as a periodic stacking of quasiperiodic planes. The anisotropy between the modes propagating in the periodic and quasiperiodic directions is found to be much weaker than theoretically predicted. A strong resonance splitting is observed at an energy transfer of 15 meV for transverse modes polarized in the quasiperiodic plane. Received: 18 November 1998 / Accepted: 27 November 1998  相似文献   

3.
The vibrational spectrum of ultra-thin layer GaSb/AlSb superlattices was investigated in detail by infrared (IR) and Raman spectroscopies. The effect of confinement of the transverse and longitudinal optical phonons in both types of the layers was studied. The dispersions of optical phonons of the GaSb and the AlSb obtained from the analysis of the Raman and IR spectra are in a good accordance with the theoretical data and results of neutron scattering experiments. First- and second-order Raman spectroscopy indicates the presence of intermixture of atoms at the interfaces in the GaSb/AlSb superlattices. Received: 11 May 1998 / Accepted: 21 July 1998  相似文献   

4.
Aperiodic crystals may have additional low frequency modes related to the possibility to describe them in a higher-dimensional space. Dynamics associated with these degrees of freedom is called phasonic, but there are very different phenomena of this type. A discussion is given of the use of the term. The relation between phason modes, the crystal structure, and the modulation and sliding modes is discussed. Finally a relation with frictionless motion is studied. Received 4 April 2002 / Received in final form 22 July 2002 Published online 17 September 2002  相似文献   

5.
The infrared spectra of the one-dimensional antiferromagnet LiCuVO4 are measured in the frequency range from 10 cm-1 to 10 000 cm-1 and at temperatures from 2 K to 300 K, for the electric field vector E of the radiation polarized either along the a- or along the b-crystallographic directions. For each polarization six infrared active phonon modes are observed in accordance with factor group analysis of the crystal structure of LiCuVO4. The theoretical group analysis of the possible spinel low-symmetry phases is performed within the framework of Landau's theory of phase transitions. The parameters of several phonon lines show noticeable anomalies around 150 K where the magnetic correlations appear in the copper chains, which may indicate a finite interaction between the phonon and the magnon subsystems in LiCuVO4. Received 19 February 2001 and Received in final form 26 June 2001  相似文献   

6.
We compare within an unifying formalism the dynamical properties of modulated and composite aperiodic (incommensurate) crystals. We discuss the concept of inner polarization and we define an inner polarization parameter β that distinguishes between different acoustic modes of aperiodic crystals. Although this concept has its limitations, we show that it can be used to extract valuable information from neutron coherent inelastic scattering experiments. Within certain conditions, the ratio between the dynamic and the static structure factors at various Bragg peaks depends only on β. We show how the knowledge of β for modes of an unknown structure can be used to decide whether the structure is composite or modulated. The same information can be used to predict scattered intensity within unexplored regions of the reciprocal space, being thus a guide for experiments. Received 9 June 2002 Published online 14 October 2002 RID="a" ID="a"e-mail: Ovidiu.Radulescu@univ-rennes1.fr  相似文献   

7.
We present inelastic neutron scattering measurements of the low energy and strongly damped phonons in the high temperature bcc phase of zirconium. These phonons were investigated at different scattering vectors but equivalent phonon wave vectors in different Brillouin zones or along different but equivalent paths in the same Brillouin zone. Neither the observed differences in intensity nor in line shapes can be explained by the coherent one-phonon scattering law . This leads to an apparent violation of the fundamental symmetry of lattice dynamics. Taking into account the strong anharmonicity of these phonons, interferences between one- and multi-phonon scattering are held responsible for these effects. Measurements in different scattering planes reveal that due to the symmetry of the bcc lattice, these effects can only be observed in certain directions. Received: 24 December 1997 / Received in final form: 9 March 1998 / Accepted: 19 March 1998  相似文献   

8.
We have performed a first-principles study of structural, dynamical, and dielectric properties of the chalcopyrite semiconductor CuInS2. The calculations have been carried out within the local density functional approximation using norm-conserving pseudopotentials and a plane-wave basis. Born effective charge tensors, dielectric permitivity tensors, the phonon frequencies at the Brillouin zone center and mode oscillator strengths are calculated using density functional perturbation theory. The calculated properties agree with infrared and Raman measurements. Received 12 December 2002 / Received in final form 17 March 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: resul@ibu.edu.tr  相似文献   

9.
The low frequency lattice dynamics and its relationship to the second order paraelectric-to-ferroelectric transition in Sn2P2S6 is studied. The dispersion branches of the acoustic and lowest lying optical phonons in the a*-c* plane have been obtained in the ferroelectric phase, for x-polarized phonons. Close to the phase transition a considerable softening is found for the lowest optical mode (Px), comparable to the behaviour observed in previous Raman investigations. As found previously in Sn2P2Se6, a strong coupling between the TO(Px) and TA(uxz) phonons is observed, although, apparently, not strong enough to lead to an incommensurate phase. The soft TO(Px) mode at the zone center is observed. The temperature dependence of its frequency and damping shows that the transition is not entirely displacive. At low temperatures an unusual apparent negative LO-TO splitting is observed which is shown to arise from the coupling of the x-polarized soft mode to the nearby z-polarized optical phonon. For comparison, the soft TO(Px) dispersion in the a*-b* plane is measured in both the paraelectric and ferroelectric phases. Consistent frequency changes and LO-TO splitting are observed, revealing a significant interaction between the TA(uyx) and LA(uxx) acoustics branches and the TO and LO soft optic branches, respectively. In contrast, the nearby y-polarized optic branch shows almost no temperature dependence. Finally, the influence of piezoelectric effects on the limiting acoustic slopes in the ferroelectric phase is discussed. Received: 11 May 1998 / Revised and Accepted: 15 June 1998  相似文献   

10.
We report on the evaluation of the distribution of diameters for nanotube samples with a wide variation of mean diameters. Such results were obtained from a detailed analysis of the radial breathing mode Raman response and compared to results obtained from an evaluation of optical spectra and X-ray diffraction pattern. The evaluation of the Raman data needs a well refined analysis as the experimental analysis exhibits a rather complicated and oscillating relation between response and exciting laser. Both, an exact calculation where the density of states was considered explicitly and an approximate calculation were applied. Both models used for the analysis are able to explain several unexpected results from the experiment such as the oscillating behavior of the spectral moments, unusual discontinuities in the first moments of the Raman response for excitation in the IR, a fine structure for the response in optics and Raman, and an up shift of the RBM frequency as compared to qualified ab initio calculations. In detail the first moment and the variance of the spectra were used for the evaluation of the diameter distribution. To obtain good results between experimental and theoretical oscillation pattern the transition energy between the first two van Hove singularities had to be scaled up which is considered as a result from coulomb interaction of the electrons in the tubular material. On the other hand the analysis does not only allow to determine the mean value and the width of the diameter distribution but yields also a value for the average bundle diameters or, alternatively, the strength of the tube-tube interaction. The model used for the analysis of the Raman data is also appropriate to analyze the optical response, at least for the spectral range from 0.5 eV to 3.5 eV. The fine structure in the response for the transitions between the three lowest van Hove singularities is well reproduced and the mean tube diameters and their distribution is obtained in very good agreement with the results from the Raman analysis. From the X-ray analysis the same mean values and comparable distributions for the tube diameters were received whereas the bundle diameters could not be retained with high precision in this case. Received 18 February 2001 and Received in final form 3 April 2001  相似文献   

11.
The Raman spectrum of single wall carbon nanotubes (SWNTs) prepared by high pressure CO decomposition (HiPCO process) has been recorded at nine excitation laser energies ranging from 1.83 eV to 2.71 eV. The characteristic nanotubes features: G band, D band and radial breathing mode (RBM) have been analyzed and compared to those of an arc discharge SWNT material of similar diameter. A strong Breit-Wigner-Fano type (metallic) contribution to the G band was found in the spectra measured with green lasers, while spectra measured with red lasers indicate resonances of semiconducting SWNTs. Analysis of the energy dependence of the position of the D band revealed sinusoid oscillations superimposed on a linear trend. The validity of full DOS calculations for HiPCO materials has been confirmed by a match found between the estimated spectral contribution of metallic SWNTs as calculated from the components of the measured G band and as predicted by the (n, m) indexes of the major scatterers of DOS simulations. The RBM region of the HiPCO spectrum is more complex than usually observed for SWNTs. The analysis performed with a Gaussian distribution and improved fitting parameters leads to a mean diameter and variance of 1.05 nm and 0.15 nm, respectively. A bimodal Gaussian distribution had little influence on the error sum but reduced the standard error slightly. The major spectral features of the RBM could be interpreted using available resonance Raman theory. Received 5 February 2002 / Received in final form 3 April 2002 Published online 19 July 2002  相似文献   

12.
In a previous neutron scattering study, we had observed that the TA phonon softening in L12-ordered ferromagnetic Fe72Pt28 Invar is pronounced at the zone boundary M-point and leads to an antiferrodistortive phase transition at low temperatures. Here, we report on similar neutron scattering investigations on two ordered crystals with higher Fe content to investigate the relation between the TA phonon softening and the martensitic transformation, which occurs in Fe-rich ordered Fe-Pt. We find that the TA phonon softening, especially at the M-point zone boundary, does not depend on the composition of the investigated crystals. In Fe74.5Pt25.5, however, the antiferrodistortive phase transition temperature is enhanced due to tetragonal strain preceding the martensitic transition. In Fe77Pt23 a precursor driven premartensitic phase transition is not observed. The structure of the martensite is, however, influenced by the soft mode lattice instability of the austenite. This would explain the origin of structural details found previously for Fe3Pt thermoelastic martensite. Received 18 January 1999 and Received in final form 11 March 1999  相似文献   

13.
The acoustic phonon dispersions of two Invar crystals , one ordered with the () structure, the other disordered fcc, have been investigated between 3.4 K and 470 K by inelastic and elastic neutron scattering. For the ordered crystal, pronounced softening of the whole phonon branch is observed on cooling below the Curie temperature. Particularly strong phonon softening at the M-point zone boundary of the structure leads to a displacive, antiferrodistortive phase transition at low temperatures. For the disordered crystal, much weaker softening of the phonons is observed and restricted to the region near the Brillouin zone center, where increasing elastic scattering with decreasing temperature indicates the growth of local tetragonal strain. This strain is considered as a typical precursor of the transformation to bct martensite. Specific heat measurements, performed at low temperatures on both crystals confirm the neutron scattering results and reveal considerable enhancement of the low energy phonon density of states in the ordered crystal. Received 18 January 1999  相似文献   

14.
In 2D optical patterns obtained in a Liquid Crystal Light Valve with optical feedback, we show a new kind of geometrical frustration which comes from the imposed form of the boundaries. The circular section of the incoming laser beam presents a symmetry which belongs to the O(2) group, whereas the optical feedback selects patterns with a symmetry restrained to a dihedral subgroup of O(2). By imposing boundaries which respect the symmetry of the dihedral group, we lift the frustration and obtain perfectly ordered patterns. Received 19 January 2001 and Received in final form 2 June 2001  相似文献   

15.
The structural and electronic properties of MgAuSn in the cubic AlLiSi structure have been studied, using density functional theory within the local density approximation. The calculated lattice constant for MgAuSn is found to be in good agreement with its experimental value. Our calculated electronic structure is also compared in detail with a recent tight-binding. A linear-response approach to density-functional theory is used to calculate the phonon spectrum and density of states for MgAuSn.  相似文献   

16.
We report on grain growth and related structure change in single phased Al-Li-Cu quasicrystals. The icosahedral phase grains have been investigated using scanning ion microscopy and transmission electron microscopy. Regular boundaries between large grains have been observed both before and after high temperature annealing. The electron diffraction study shows that the grain growth is accompanied by a reduction of the phason-strains. The orientation relation between grains sets the 2-fold icosahedral axes parallel, and the coincidence of the planes depends on the phason strain-field. The effect of phason-strain field on these boundaries is discussed. It is proposed that the phason strain elimination can play a role in the grain growth. Received 1 February 1999 and Received in final form 12 May 1999  相似文献   

17.
In the tight-binding approximation, we have investigated the behaviour of persistent currents in a one-dimensional Thue-Morse mesoscopic ring threaded by a magnetic flux. By applying a transfer-matrix technique, the energy spectra and the persistent currents in the system have been numerically calculated. It is shown that the flux-dependent eigenenergies form “band” structures and the energy gaps will enlarge if the site energy increases. Actually, the site energy and the filling-up number of electrons are two important factors which have much influence upon the persistent current. Increment of the site energy in the system will lead to a dramatic suppression of the currents. When the highest-occupied energy level is on the top of the band, the total current is limited; otherwise, the persistent current increases by several orders of magnitude. Generally, this kind of large scale change in the magnitude of the current can easily be observed in the vicinity of band gaps. The parity effect in the Thue-Morse ring is also discussed. Received 22 January 2001 and Received in final form 25 October 2001  相似文献   

18.
The nonlinear localized vibrational modes of a one-dimensional atomic chain with two periodically alternating masses and force constants are analytically investigated using a discrete multiple-scale expansion method. This model simulates a row of atoms in the <1 1 1>-direction of sphalerite, or zinc blende, crystals. Owing to the structural asymmetry, the vibrational amplitude is governed by a perturbed nonlinear Schr?dinger equation instead of the standard one found in one-dimensional lattices with two alternating masses but uniform force constant. Although the stationary localized modes with carrier wavevector at the Brillouin-zone boundary are similar to those of ionic lattices, the moving localized modes with wavevectors within the zone are different owing to the perturbation. The calculation shows that the height of the moving localized modes in this lattice dampens with time. Received 14 May 2001 and Received in final form 12 July 2001  相似文献   

19.
M?ssbauer studies were performed on single crystals of guanidinium nitroprusside with different orientations of their principal crystallographic axes (a, b, c) with respect to the incident radiation. The markedly anisotropic Lamb-M?ssbauer factor f LM , i.e. f LM (a) = 0.118(8), f LM (b) = 0.174(8), f LM (c) = 0.202(8) is in contrast to that of nitroprussides with inorganic anions. The observed anisotropy is ascribed to the anisotropic vibrational mean-square displacement of the nitroprusside anions as a whole which is due to the specific packing of both, anions and cations, as well as the very weak chemical bonding between the ions, typical only for guanidinium nitroprusside. The vibrational anisotropy of iron atoms in barium nitroprusside that has been observed by X-ray structural investigations has a different origin and therefore does not result in an anisotropic Lamb-M?ssbauer factor. We have also investigated metastable states in guanidinium nitroprusside that have been populated by means of incoherent irradiation from light-emitting diodes. With a specific orientation of the guanidinium nitroprusside single crystal a population of the metastable states up to 26% could be achieved. Populations of comparable size on lithium, sodium and potassium nitroprussides have only been reached using coherent laser irradiation. Received 15 December 1998 and Received in final form 3 March 1999  相似文献   

20.
Within the framework of the dielectric continuum model, interface optical(IO) and surface optical(SO) phonon modes and the Fr?hlich electron-IO (SO) phonon interaction Hamiltonian in a multi-shell spherical system were derived and studied. Numerical calculation on CdS/HgS/H2O and CdS/HgS/CdS/H2O spherical systems have been performed. Results reveal that there are two IO modes and one SO mode for the CdS/HgS/H2O system, one SO mode and four IO modes whose frequencies approach the IO phonon frequencies of the single CdS/HgS heterostructure with the increasing of the quantum number l for CdS/HgS/CdS/H2O. It also showed that smaller l and SO phonon compared with IO phonon, have more significant contribution to the electron-IO (SO) phonon interaction. Received 16 October 2001 and Received in final form 23 January 2002 Published online 25 June 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号