首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
概述了羟醛缩合反应中酸碱双功能催化剂的分类、酸碱协同催化作用的主要影响因素并推测了酸碱协同催化反应机理。羟醛缩合反应中酸碱双功能催化剂,就其所提供的酸位和碱位的性质而言可分为两类:一类是表面本身兼具酸位和碱位的双功能无机材料,另一类是通过分别引入酸位和碱位所形成的双功能介孔材料。分别对这两类催化剂在羟醛缩合反应中的应用进行了综述。此外,还分析和探讨了酸碱中心的强度匹配、相对位置及空间位阻等因素对酸碱协同催化的影响并推测了酸碱协同催化反应机理。最后,对酸碱双功能催化剂在羟醛缩合反应中的应用前景进行了展望。  相似文献   

2.
丙烯酸及其酯是重要的化工原料, 广泛应用于涂料、粘结剂、纤维等领域, 目前工业上常采用丙烯两段氧化法进行制备. 然而该方法以石油基原料丙烯为源头, 采用 V/Mo/Bi 等金属催化剂, 不符合可持续发展理念, 且存在环境污染及氧气下产物易过度氧化等问题. 因此, 如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标. 以乙酸甲酯(MAc) 和甲醛为原料, 通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径, 原料均可由煤基甲醇得到, 符合我国"富煤、贫油、少气"的基本能源结构, 且该方法碳原子利用率为 100%, 副产物仅为水, 属于绿色环保合成路径.羟醛缩合是典型的碳链增长反应, 可在酸性催化剂、碱性催化剂、以及酸碱双功能催化剂存在下发生. 碱性催化剂一般为负载型碱金属氧化物, 例如以 SiO2为载体的负载型 Na, K, Cs 氧化物催化剂等, 但都存在活性组分流失的问题, 进而导致催化剂的失活, 难以实现工业化. 酸碱双功能催化剂是目前研究的热点, 由于具有酸催化剂的高选择性和碱催化剂的高活性, 其反应性能要远优于单一酸性催化剂和单一碱性催化剂, 广大研究者对此进行了深入广泛的研究, 目前基本处于实验室阶段. 相对而言, 目前酸性催化剂上通过羟醛缩合反应制备丙烯酸及其酯的研究工作较少, 特别是以固体酸为催化剂进行乙酸甲酯和甲醛气固相反应研究非常少见.我们以甲缩醛为甲醛源, 创新性地采用固体硅铝分子筛为酸性催化剂, 催化甲缩醛 (DMM) 和 MAc 发生羟醛缩合反应来制备丙烯酸. 硅铝分子筛具有较高的活性, 可高效地催化羟醛缩合反应, 且由于分子筛催化剂具有很好的再生性能, 即使催化剂寿命较短, 也可采用流化床或移动床等反应器进行工业化, 因此存在良好的工业化前景. 为了进一步深入研究酸性位和碱性位各自对 DMM 和 MAc 羟醛缩合反应的影响, 本文以 HZSM-35 分子筛为载体, 采用浸渍法制备不同碱金属铯氧化物含量的催化剂, 利用氮气吸附/脱附方法和化学程序升温 (NH3-TPD) 方法对其孔结构和酸性质进行表征, 并进一步考察催化剂的性能. 结果表明, 微孔体积随着碱金属 Cs 负载量的增加而逐渐减小, 当 Cs 负载量增加至 10 wt% 时, 样品微孔体积从初始 0.105 cm3/g 降至 0.063 cm3/g. NH3-TPD 结果显示, 当 Cs 负载量为 1 wt%, 酸性催化剂载体上的强酸和弱酸活性位被大量碱性氧化物占据; 当负载量超过 5 wt% 时, 所有的酸性位均被覆盖. 随后考察负载不同碱金属含量分子筛的羟醛缩合反应性能, 发现碱金属氧化物的引入不利于羟醛缩合反应的进行, 这主要是由于作为甲醛源的 DMM 只有在酸中心上才能进行分解产生甲醛, 促使羟醛缩合反应顺利进行. 当采用 DMM 为甲醛源时, 体系中必须有酸性位存在. 同时得知, 分子筛 HZSM-35 中强酸和弱酸均是羟醛缩合反应的有效酸性位, 但强酸同时催化原料发生类甲醇制烯烃过程, 致使大量烃类副产物生成, 产生较重的积炭物种. 羟醛缩合反应在含有大量弱酸催化剂上 (如γ-Al2O3) 也可顺利进行, 且具有较高的活性和稳定性.  相似文献   

3.
丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备.然而该方法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.因此,如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(MAc)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国"富煤、贫油、少气"的基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.羟醛缩合是典型的碳链增长反应,可在酸性催化剂、碱性催化剂、以及酸碱双功能催化剂存在下发生.碱性催化剂一般为负载型碱金属氧化物,例如以SiO_2为载体的负载型Na,K,Cs氧化物催化剂等,但都存在活性组分流失的问题,进而导致催化剂的失活,难以实现工业化.酸碱双功能催化剂是目前研究的热点,由于具有酸催化剂的高选择性和碱催化剂的高活性,其反应性能要远优于单一酸性催化剂和单一碱性催化剂,广大研究者对此进行了深入广泛的研究,目前基本处于实验室阶段.相对而言,目前酸性催化剂上通过羟醛缩合反应制备丙烯酸及其酯的研究工作较少,特别是以固体酸为催化剂进行乙酸甲酯和甲醛气固相反应研究非常少见.我们以甲缩醛为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化甲缩醛(DMM)和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且由于分子筛催化剂具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此存在良好的工业化前景.为了进一步深入研究酸性位和碱性位各自对DMM和MAc羟醛缩合反应的影响,本文以HZSM-35分子筛为载体,采用浸渍法制备不同碱金属铯氧化物含量的催化剂,利用氮气吸附/脱附方法和化学程序升温(NH_3-TPD)方法对其孔结构和酸性质进行表征,并进一步考察催化剂的性能.结果表明,微孔体积随着碱金属Cs负载量的增加而逐渐减小,当Cs负载量增加至10 wt%时,样品微孔体积从初始0.105 cm~3/g降至0.063 cm~3/g.NH_3-TPD结果显示,当Cs负载量为1 wt%,酸性催化剂载体上的强酸和弱酸活性位被大量碱性氧化物占据;当负载量超过5 wt%时,所有的酸性位均被覆盖.随后考察负载不同碱金属含量分子筛的羟醛缩合反应性能,发现碱金属氧化物的引入不利于羟醛缩合反应的进行,这主要是由于作为甲醛源的DMM只有在酸中心上才能进行分解产生甲醛,促使羟醛缩合反应顺利进行.当采用DMM为甲醛源时,体系中必须有酸性位存在.同时得知,分子筛HZSM-35中强酸和弱酸均是羟醛缩合反应的有效酸性位,但强酸同时催化原料发生类甲醇制烯烃过程,致使大量烃类副产物生成,产生较重的积炭物种.羟醛缩合反应在含有大量弱酸催化剂上(如γ-Al2O3)也可顺利进行,且具有较高的活性和稳定性.  相似文献   

4.
采用浸渍法制备了一系列MgO改性催化剂MgO/HMCM-22, 利用X射线衍射、N2物理吸附-脱附、扫描电镜、傅里叶变换红外光谱、NH3及CO2程序升温脱附等技术对所制催化剂进行了表征. 结果表明, MgO改性后MCM-22分子筛仍保持原有的结构; 随着MgO负载量的增加, 催化剂的碱强度和碱含量显著增加, 而强酸含量明显减少, 弱酸酸位有所增加. 以Knoevenagel缩合为探针反应, 考察了所制催化剂的性能. 在优化的反应条件下, MgO/HMCM-22上苯甲醛转化率高达92.6%. 催化剂 MgO/HMCM-22和MgO/NaMCM-22的催化性能明显优于HMCM-22和MgO. 酸中心和碱中心均对该缩合反应起着重要的促进作用. MgO/HMCM-22对Knoevenagel缩合反应显示出较高的催化活性, 体现出明显的酸碱协同催化作用.  相似文献   

5.
樊建芬  孙云鹏  肖鹤鸣 《有机化学》2006,26(11):1463-1467
脯氨酸催化不对称直接羟醛缩合反应是近年来不对称合成研究的热点. 综述并讨论了分子内和分子间不对称直接羟醛缩合的反应机理及其微观过程.  相似文献   

6.
利用镁铝水滑石的记忆效应,以过硫酸铵为改性剂,经过浸渍焙烧复原过程,制得一系列硫促改性镁铝水滑石催化剂.利用XRD,BET,SEM和FT-IR等手段对催化剂的物理化学性质进行了表征.结果显示,改性后催化剂仍保有原水滑石层状晶体结构,催化剂表面具有碱中心与酸中心.随着硫含量增加,催化剂碱中心逐渐减少,酸中心增加,酸性增强.以对硝基苯甲醛与丙酮的羟醛缩合为探针反应,考察了催化剂的催化性能.  相似文献   

7.
双位点碱性离子液体对Knoevenagel缩合反应的协同催化作用   总被引:2,自引:0,他引:2  
分别处于阴阳离子中具有两种碱性位点的离子液体催化剂1-(2-哌啶基-乙基)-3-甲基咪唑吗啉乙基磺酸盐([Pemim]-Mes)在Knoevenagel缩合反应中表现出明显的协同促进催化作用. 该催化剂在非酸性条件下循环使用10次以后仍保持良好的活性和稳定性,并普遍适用于芳香醛类底物的缩合反应. 根据实验结果,提出了紧密结合的碱性阴阳离子对协同催化Knoevenagel缩合的反应机理.  相似文献   

8.
研究了在三种固体超强酸催化下醛(酮)自身的羟醛缩合反应,系统考察了反应时间,催化剂用量等因素对反应的影响,优化了反应条件.同时,对该反应的溶剂效应进行了研究.结果表明,当催化剂用量为2 g/1 mol醛(酮),反应5 h,转化率可达40%,溶剂对该反应有明显的抑制作用.超强酸对各种醛都具有较好的催化活性,其催化醛类化合物自身缩合的转化率都在48%以上,选择性在95%以上,证明固体超强酸对该缩合反应有较好的催化活性和选择性.  相似文献   

9.
2-(1-环己烯基)环己酮的合成   总被引:6,自引:0,他引:6  
以酸或碱做催化剂,环己酮自身催化缩合生成以2-(1-环己烯基)环己酮为主的缩合产物,同时还生成2-环己亚烷基环己酮,以及副产物三聚物。考察了使用酸、碱在不同反应条件下的缩合反应,试验表明,硫酸做催化剂的工艺较为可取。  相似文献   

10.
甲基异丁基酮(MIBK)是一种重要的化学品,广泛应用于涂料以及有机合成领域,下游产品包括特种涂料溶剂、高品质脱蜡溶剂和高性能橡胶防老剂等.近年来随国民经济的快速发展,甲基异丁基酮的年需求量与价格逐年上升,应用领域也不断拓宽.因此,开展MIBK绿色合成工艺的研究对提高原子经济性、打破国际技术壁垒以及满足国内市场需求具有重要意义.目前生产MIBK最绿色、高效的生产方法是丙酮一步法,包括缩合、脱水以及加氢等一系列反应过程,该工艺顺利实施的关键在于所使用的催化剂.根据丙酮一步法合成MIBK反应特点,所用催化剂表面必须具备多种催化活性中心,从而保证缩合、脱水以及加氢反应的顺利进行,实现从反应物到产物的高效转化.因此,高活性和高选择性多功能催化剂的制备是提高MIBK生产效率的有效途径.本文采用浸渍法将具有加氢活性的贵金属Pd负载在表面具有丰富酸性位点或碱性位点的固体酸或固体碱氧化物载体上,制备了Pd/MO_x(M=Ti,Ce,Al,Si,La,Ca和Mg)双功能催化剂,并用于丙酮一步法合成MIBK反应中.结果表明,Pd基金属-酸/碱双功能催化剂均可以催化该连串反应的进行,其性能高于Pd基金属-酸双功能催化剂,其中Pd/MgO催化剂上丙酮转化率为30.67%,MIBK产率可达27.61%.构效关系研究显示,催化剂表面酸性位点和碱性位点对于该连串反应的各反应步骤催化性能有所不同,其中碱性位点有利于丙酮缩合反应,而酸性位点有利于二丙酮醇脱水反应,且强路易斯碱性中心位点可以更好的催化缩合反应的进行,同时中强度路易斯酸性中心位点具有最佳的催化脱水反应的能力.此外,表面具有最强路易斯碱性中心位点Pd/La_2O_3催化剂并未表现出最高的MIBK产率,说明在丙酮一步法合成MIBK反应中,Pd基双功能催化剂表面各位点间的协同对其催化性能具有重要的影响.本文进一步采用水热法和沉淀沉积法制备了系列MgTiO_x、MgAlO_x和CaTiO_x二元复合氧化物(MMO)以及CaMgAlO_x和TiMgAlO_x三元MMO,并以其为载体,通过浸渍焙烧还原制备Pd基多功能催化剂,并用于丙酮一步法合成MIBK反应中,发现Pd/MgAl-MMO多功能催化剂具有最高的催化活性及MIBK产率.对其表面多功能位点数量进行调变,并通过XRD、CO_2-TPD、NH3-TPD、吡啶红外、CO_2红外和HRTEM等进行表征,结果表明,经过450 ℃焙烧酸碱中心摩尔量比为0.4的0.1%Pd/Mg_3Al-MMO多功能协同催化剂三种催化活性中心位点协同作用最佳,其丙酮转化率为38.20%,MIBK产率可达31.63%.Pd/Mg_3AlMMO多功能协同催化剂三种活性位点接近性研究表明,在多功能催化剂中分离酸中心活性位点、碱中心活性位点以及加氢活性位点后,获得的双功能催化剂产率均明显下降,说明Pd/Mg_3Al-MMO多功能催化剂在三种活性位点相互接近时才能更好催化反应的进行.根据多功能催化剂构效关系研究结果,对各催化活性中心的密度及分布进行调控,结果显示,通过沉淀沉积法制备的Pd/Mg_3Al-MMO催化剂性能进一步提高,丙酮转化率为42.11%,产率高达37.20%.  相似文献   

11.
甲基异丁基酮 (MIBK) 是一种重要的化学品, 广泛应用于涂料以及有机合成领域, 下游产品包括特种涂料溶剂、高品质脱蜡溶剂和高性能橡胶防老剂等. 近年来随国民经济的快速发展, 甲基异丁基酮的年需求量与价格逐年上升, 应用领域也不断拓宽. 因此, 开展 MIBK 绿色合成工艺的研究对提高原子经济性、打破国际技术壁垒以及满足国内市场需求具有重要意义. 目前生产 MIBK 最绿色、高效的生产方法是丙酮一步法, 包括缩合、脱水以及加氢等一系列反应过程, 该工艺顺利实施的关键在于所使用的催化剂. 根据丙酮一步法合成 MIBK 反应特点, 所用催化剂表面必须具备多种催化活性中 心, 从而保证缩合、脱水以及加氢反应的顺利进行, 实现从反应物到产物的高效转化. 因此, 高活性和高选择性多功能催化剂的制备是提高 MIBK 生产效率的有效途径.本文采用浸渍法将具有加氢活性的贵金属 Pd 负载在表面具有丰富酸性位点或碱性位点的固体酸或固体碱氧化物载体上, 制备了 Pd/MOx(M = Ti, Ce, Al, Si, La, Ca和Mg) 双功能催化剂, 并用于丙酮一步法合成 MIBK 反应中. 结果表明, Pd基金属-酸/碱双功能催化剂均可以催化该连串反应的进行, 其性能高于 Pd 基金属-酸双功能催化剂, 其中 Pd/MgO 催化剂上丙酮转化率为30.67%, MIBK 产率可达27.61%. 构效关系研究显示, 催化剂表面酸性位点和碱性位点对于该连串反应的各反应步骤催化性能有所不同, 其中碱性位点有利于丙酮缩合反应, 而酸性位点有利于二丙酮醇脱水反应, 且强路易斯碱性中心位点可以更好的催化缩合反应的进行, 同时中强度路易斯酸性中心位点具有最佳的催化脱水反应的能力. 此外, 表面具有最强路易斯碱性中心位点 Pd/La2O3催化剂并未表现出最高的MIBK产率, 说明在丙酮一步法合成MIBK反应中, Pd基双功能催化剂表面各位点间的协同对其催化性能具有重要的影响.本文进一步采用水热法和沉淀沉积法制备了系列MgTiOx、MgAlOx和CaTiOx二元复合氧化物 (MMO) 以及 CaMgAlOx和 TiMgAlOx三元MMO, 并以其为载体, 通过浸渍焙烧还原制备 Pd 基多功能催化剂, 并用于丙酮一步法合成MIBK反应中,发现Pd/MgAl-MMO多功能催化剂具有最高的催化活性及 MIBK 产率. 对其表面多功能位点数量进行调变, 并通过 XRD、CO2-TPD、NH3-TPD、吡啶红外、CO2红外和HRTEM等进行表征, 结果表明, 经过450 ℃焙烧酸碱中心摩尔量比为0.4的0.1%Pd/Mg3Al-MMO多功能协同催化剂三种催化活性中心位点协同作用最佳, 其丙酮转化率为38.20%, MIBK产率可达31.63%. Pd/Mg3AlMMO多功能协同催化剂三种活性位点接近性研究表明, 在多功能催化剂中分离酸中心活性位点、碱中心活性位点以及加氢活性位点后, 获得的双功能催化剂产率均明显下降, 说明Pd/Mg3Al-MMO多功能催化剂在三种活性位点相互接近时才能更好催化反应的进行. 根据多功能催化剂构效关系研究结果, 对各催化活性中心的密度及分布进行调控, 结果显示, 通过沉淀沉积法制备的Pd/Mg3Al-MMO催化剂性能进一步提高, 丙酮转化率为42.11%, 产率高达37.20%.  相似文献   

12.
烷烃加氢异构化反应   总被引:2,自引:0,他引:2  
梁君  王福平 《化学进展》2008,20(4):457-463
综述了烷烃加氢异构化反应中的正碳离子异构和裂化机理、孔口与钥匙锁催化、择形催化及双分子机理,详细论述了分子筛基双功能催化剂酸性、金属、金属酸位比、孔道、晶粒尺寸和催化剂改性对烷烃加氢异构反应活性、异构选择性等的影响。论述了近期烷烃加氢异构催化剂改性的新方法。提出针对不同催化剂体系,根据反应机理提高异构催化剂活性和选择性的途径。  相似文献   

13.
丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备,但该法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(Mac)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国"富煤、贫油、少气"基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.本文以甲缩醛(DMM)为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化DMM和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此具有良好的工业化前景.硅铝分子筛中常含有Br?nsted酸和Lewis酸,为试图说明羟醛缩合反应的真正活性位点,我们以羟醛缩合反应性能最佳的HZSM-35分子筛为研究目标.首先,利用红外研究HZSM-35分子筛的酸性质.发现分子筛中桥羟基提供Br?nsted酸,外骨架铝物种提供Lewis酸.通过对桥羟基红外峰一阶求导,发现其对称性较差,表明Br?nsted酸在HZSM-35分子筛孔道中分布不均匀.利用红外分峰手段,得知约51%的Br?nsted酸分布于八元环和六元环交叉所形成的笼(cage)中,约23%分布于十元环孔道,26%分布于八元环孔道中.同时,利用吡啶在分子筛HZSM-35不同温度下的吸附情况验证了这一分峰结果.其次,利用钠离子交换方法制备不同Br?nsted酸浓度的ZSM-35分子筛,经吡啶红外表征得知,Br?nsted酸浓度随钠离子交换程度增加而逐渐降低,而Lewis酸浓度并未改变;在羟醛缩合反应性能中,丙烯酸及丙烯酸甲酯选择性和收率均随Br?nsted酸浓度增加而逐渐升高,考虑到Lewis酸浓度并未变化,可知Br?nsted酸是羟醛缩合反应性能的活性位点,其浓度增加有利于羟醛缩合反应性能的提高.同时,对比不同ZSM-35分子筛失活现象,高Br?nsted酸浓度时分子筛重积炭量最高,这可能是由于Br?nsted催化不饱和产物关环生成芳烃物种或(和)发生氢转移过程所导致.  相似文献   

14.
针对目前工业生产中正丁醛自缩合合成辛烯醛使用液体碱催化剂所带来的环境污染严重、生产成本高、产物选择性低等缺点,着重分析了研究开发中的各种固体碱催化剂的优缺点,并指出了提高催化稳定性是其研究方向。此外,还对酸碱双功能固体作为该反应催化剂进行了展望。  相似文献   

15.
丙烯酸及其酯是重要的化工原料,广泛应用于涂料、粘结剂、纤维等领域,目前工业上常采用丙烯两段氧化法进行制备,但该法以石油基原料丙烯为源头,采用V/Mo/Bi等金属催化剂,不符合可持续发展理念,且存在环境污染及氧气下产物易过度氧化等问题.如何高效、安全、大规模工业化制备丙烯酸及其酯是研究者追求的目标.以乙酸甲酯(Mac)和甲醛为原料,通过羟醛缩合一步制备丙烯酸及其酯是一条完全不同于丙烯氧化法的合成路径,原料均可由煤基甲醇得到,符合我国"富煤、贫油、少气"基本能源结构,且该方法碳原子利用率为100%,副产物仅为水,属于绿色环保合成路径.本文以甲缩醛(DMM)为甲醛源,创新性地采用固体硅铝分子筛为酸性催化剂,催化DMM和MAc发生羟醛缩合反应来制备丙烯酸.硅铝分子筛具有较高的活性,可高效地催化羟醛缩合反应,且具有很好的再生性能,即使催化剂寿命较短,也可采用流化床或移动床等反应器进行工业化,因此具有良好的工业化前景.硅铝分子筛中常含有Brnsted酸和Lewis酸,为试图说明羟醛缩合反应的真正活性位点,我们以羟醛缩合反应性能最佳的HZSM-35分子筛为研究目标.首先,利用红外研究HZSM-35分子筛的酸性质.发现分子筛中桥羟基提供Brnsted酸,外骨架铝物种提供Lewis酸.通过对桥羟基红外峰一阶求导,发现其对称性较差,表明Brnsted酸在HZSM-35分子筛孔道中分布不均匀.利用红外分峰手段,得知约51%的Brnsted酸分布于八元环和六元环交叉所形成的笼(cage)中,约23%分布于十元环孔道,26%分布于八元环孔道中.同时,利用吡啶在分子筛HZSM-35不同温度下的吸附情况验证了这一分峰结果.其次,利用钠离子交换方法制备不同Brnsted酸浓度的ZSM-35分子筛,经吡啶红外表征得知,Brnsted酸浓度随钠离子交换程度增加而逐渐降低,而Lewis酸浓度并未改变;在羟醛缩合反应性能中,丙烯酸及丙烯酸甲酯选择性和收率均随Brnsted酸浓度增加而逐渐升高,考虑到Lewis酸浓度并未变化,可知Brnsted酸是羟醛缩合反应性能的活性位点,其浓度增加有利于羟醛缩合反应性能的提高.同时,对比不同ZSM-35分子筛失活现象,高Brnsted酸浓度时分子筛重积炭量最高,这可能是由于Brnsted催化不饱和产物关环生成芳烃物种或(和)发生氢转移过程所导致  相似文献   

16.
羟醛缩合是重要的C–C键偶联反应,可以增长碳链,降低O/C比,用于生产很多大宗化学品,在生物质转化和生物油升级中广受关注.本文以丙醛分子自缩合反应作为模型反应,对比研究了稀土分子筛和稀土氧化物在醛自缩合反应中的催化性能,发现稀土分子筛的活性远高于稀土氧化物,其中Y/Beta活性最佳,并且具有良好的循环性能.随后采用程序升温表面反应(TPSR)、原位漫反射红外光谱(in situ DRIFTS)和原位漫反射紫外光谱(in situ UV-vis DRS)对Y/Beta和Y2O3催化丙醛缩合反应过程进行对比研究.TPSR结果表明, Y/Beta催化剂的反应能垒比Y2O3低;通过原位DRIFTS和UV-visDRS谱结果发现, Y/Beta催化剂上Lewis酸位点对丙醛分子具有较强的吸附能力,利于缩合反应的进行,而Y2O3上几乎没有产物的特征峰,但出现芳香烃物种的吸收峰,表明Y2O3比Y/Beta催化剂更容易形成积碳物种,从而造成催化剂失活.我们还通过密度泛函理论(DFT)对Y/Beta分子筛的结构及其催化羟醛缩合反应过程进行计算模拟,揭示了羟醛缩合的主要反应步骤,即醛经历烯醇异构化、亲核加成和羟醛二聚体脱水等关键步骤,其中羟醛二聚体脱水是决速步.此外,具有开放结构的Y中心的催化活性比闭合结构的更高,其羟基可以通过氢键有效稳定羟醛二聚体的过渡态,从而降低其转化能垒,并且羟基的数量越多,能垒越低.因此,具有Lewis酸位点的Y(OSi)(OH)2是羟醛缩合反应的主要活性中心.综上,[Si]Beta分子筛对活性位点Y-OH的稳定作用, Y–OH是反应的活性位点,能够显著降低反应的能垒,而分子筛的限域作用可以有效控制中间物种的扩散,从而进一步促进羟醛缩合反应的进行.醛在反应过程中首先吸附在Y–OH位点上,经历α-C–H键的裂化,转变成烯醇式结构;裂化产生的氢原子和Y–OH中的羟基作用能够大大降低活化能垒;烯醇式离子和另一分子醛自发发生亲核加成反应生成醇盐离子,生成的醇盐离子与烯醇异构化反应中裂化的氢原子发生质子化反应,从而得到羟醛二聚体;最后,羟醛二聚体吸附在Y–OH上,通过氢键稳定过渡态,降低了活化能垒,诱发脱水反应生成最终产物.  相似文献   

17.
采用"机械混合-焙烧"方法制备了负载型固体碱催化剂MgO/NaY,研究了糠醛与丙酮在水-乙醇体系中的羟醛缩合反应,考察了催化剂负载量、原料配比、反应温度、反应时间等因素对催化剂性能的影响。结果表明,20%MgO/NaY催化剂表现出最佳的催化性能,在85℃条件下反应8 h后,糠醛转化率达到99.6%,亚糠基丙酮(FA)和二亚糠基丙酮(F2A)选择性分别达到42.2%和57.1%,缩合产物的总收率为98.6%。高温促进反应中间体向产物的转化,有利于提高产物的总选择性。改变糠醛/丙酮的摩尔比可调控两种缩合产物的选择性,较高的糠醛/丙酮摩尔比有利于提高F2A的选择性,但会降低整体反应速率。重复性评价表明,催化剂具有较好的再生性能。  相似文献   

18.
考察了固体碱不同的碱性位对丙酮和碳酸二甲酯反应的影响,并对反应在不同碱性位上的反应机理进行了推测.实验结果表明,由表面羟基引起的弱碱位有利于丙酮自身缩合反应的进行,主产物为二丙酮醇、4-甲基-3-戊烯-2-酮和4-甲基4-戊烯-2-酮;Lewis酸碱离子对有利于碳酸二甲酯的甲基化反应的发生,主产物为2-甲氧基丙烯;而由固体碱表面配位不饱和的O^2-所造成的强碱位有利于碳酸二甲酯的甲氧基羰基化产物的生成,主产物为乙酰乙酸甲酯;同时发现各种产物的收率与对应的各碱性位的碱量之间均具有较好的线性关系.  相似文献   

19.
固体和水所形成的界面在各类化学和生物体系中非常常见,围绕相关物化现象的研究也一直是界面科学的前沿热点.然而,多相催化研究中对固-液界面发生的催化转化过程背后的微观机制的认识依旧十分有限,再加上水的诸多特殊理化性质,理解固-水界面的多相催化反应极具挑战性.本综述针对三类代表性的酸碱催化反应(醇类脱水、羟醛缩合和糖类异构),总结了一系列水(包括水分子本身、溶于其中的离子和由水衍生而来的其他物种)在这些体系中对表界面催化行为、反应机理和构效关系的常见影响方式,并批判性地归纳了业已提出的分子层面的观点和解释.当水的化学势较高(液态水或者水分压较大)时,其通常会抑制固体酸碱表面的催化反应,原因可以归结为:水分子在表面活性位上的竞争吸附、对活性位酸碱强度的削弱和对中间物种的溶剂化稳定作用(从而提高活化自由能能垒).水的存在也可造成活性位性质发生变化(例如活性较低的Lewis酸向活性更高的Br?nsted酸转化),或直接/间接开辟新的反应路径,从而提高催化反应速率.此外,最新研究还揭示了活性位和表面反应物种(包括过渡态)溶剂化过程中许多重要的微观现象,包括:水在限域孔道内形成团簇结构和横跨活性位的溶...  相似文献   

20.
随着生物发酵技术的进步和化学转化方法的发展,全球乙醇产量迅速增加.然而,乙醇存在能量密度低、吸水、对发动机腐蚀性高等缺点,其在汽油中的添加量有限,一般低于15%,这严重限制了乙醇产业的发展.与此相比,丁醇具有更高的能量密度和汽油添加量,是一种更加理想的油品添加剂.因此,乙醇催化转化为丁醇是连接高乙醇产量和优质丁醇需求的桥梁,具有重要的学术和应用价值.在过去的几十年里,均相催化剂、复合氧化物催化剂、羟基磷灰石及金属促进的氧化物催化剂迅速发展,但是仍存在乙醇转化率低、丁醇选择性差和催化剂不能循环等问题.乙醇催化转化为丁醇是一个Guerbet反应,乙醇首先脱氢生成乙醛,乙醛通过缩合、脱水生成巴豆醛,巴豆醛通过加氢得到丁醇.反应中主要涉及氢转移活性位和羟醛缩合活性位.因此,本文中我们根据催化反应机理,筛选了不同金属氧化物和碱催化剂体系,分别用于乙醇脱氢、巴豆醛加氢和乙醛缩合、脱水反应.结果发现,在FeNiOx和LiOH催化体系中,乙醇转化率和丁醇选择性最好.通过优化反应温度、反应时间、金属氧化物和碱量等条件,在493 K反应釜中反应24 h,得到28%的乙醇转化率、71%的丁醇选择性和超过90%的C4-C8高碳醇选择性,达到了部分均相贵金属催化剂上的反应结果.在FeNiOx和LiOH催化体系中,FeNiOx具有较强的磁性,便于磁性分离,循环八次后仍具有较高的催化活性,展示出优异的稳定性.LiOH可以通过蒸馏分离,循环三次没有明显失活,但有少量Li2CO3生成,其可以通过焙烧的方式恢复.通过穆斯堡尔谱、氢气吸附、XPS等表征和条件实验发现,FeNiOx中存在金属态的镍、铁和不同氧化态的铁物种,其能促进乙醇的脱氢和后续巴豆醛的加氢,起到氢转移的作用.LiOH具有合适的酸碱性,能够促进乙醛的羟醛缩合,并加速乙醇转化.在两者协同作用下,乙醇转化率和丁醇选择性都有显著提高.这一研究策略对此反应中新型催化剂的开发和反应机理的认识都具有重要的推动作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号