首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oxidation of water to molecular oxygen is a kinetically demanding reaction that requires efficient coupling of proton and electron transfer. The key proton-coupled electron transfer (PCET) event in water oxidation mediated by a cobalt-phosphate-based heterogeneous catalyst is the one-electron, one-proton conversion of Co(III)-OH to Co(IV)-O. We now isolate the kinetics of this PCET step in a molecular Co(4)O(4) cubane model compound. Detailed electrochemical, stopped-flow, and NMR studies of the Co(III)-OH to Co(IV)-O reaction reveal distinct mechanisms for the unidirectional PCET self-exchange reaction and the corresponding bidirectional PCET. A stepwise mechanism, with rate-limiting electron transfer is observed for the bidirectional PCET at an electrode surface and in solution, whereas a concerted proton-electron transfer displaying a moderate KIE (4.3 ± 0.2), is observed for the unidirectional self-exchange reaction.  相似文献   

2.
An iterative polyphosphorylation approach is described, which is based on a phosphoramidite (P‐amidite) derived reagent (c‐PyPA) obtained from the cyclization of pyrophosphate with a reactive diisopropylaminodichlorophosphine. This type of reagent is unprecedented as it represents a reactive P‐amidite without protecting groups. The reagent proved to be stable in solution over several weeks. Its utility is described in the context of iterative monodirectional and bidirectional polyphosphorylations. The ensuing functionalized cyclotriphosphate can be opened with a variety of nucleophiles providing ready access to diverse functionalized polyphosphate chains of defined length with several tags, including both P‐N and P‐O labels. Their interaction with exo‐ and endopolyphosphatases is described.  相似文献   

3.
Low extracellular electron transfer performance is often a bottleneck in developing high‐performance bioelectrochemical systems. Herein, we show that the self‐assembly of graphene oxide and Shewanella oneidensis MR‐1 formed an electroactive, reduced‐graphene‐oxide‐hybridized, three‐dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact‐based extracellular electron transfer. This 3D electroactive biofilm delivered a 25‐fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74‐fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms.  相似文献   

4.
A novel bidirectional current ON-OFF switch controlled by electron injection and deprivation was proposed on the basis of the density functional theory (DFT) calculation over a fullerene-phthalocyanine supramolecular system PcCoC(60) for the first time. The electron density for PcCoC(60) was revealed to move from fullerene to phthlocyanine only in the oxidized form and from phthlocyanine to fullerene only in the reduced form, reaching the control of electron movement direction by changing the oxidation state of this supramolecular system.  相似文献   

5.
Proton‐coupled electron transfer (PCET) was investigated in three covalent donor–bridge–acceptor molecules with different bridge lengths. Upon photoexcitation of their Ru(bpy)32+ (bpy=2,2′‐bipyridine) photosensitizer in acetonitrile, intramolecular long‐range electron transfer from a phenolic unit to Ru(bpy)32+ occurs in concert with release of the phenolic proton to pyrrolidine base. The kinetics of this bidirectional concerted proton–electron transfer (CPET) reaction were studied as a function of phenol–Ru(bpy)32+ distance by increasing the number of bridging p‐xylene units. A distance decay constant (β) of 0.67±0.23 Å?1 was determined. The distance dependence of the rates for CPET is thus not significantly steeper than that for ordinary (i.e., not proton coupled) electron transfer across the same bridges, despite the concerted motion of oppositely charged particles into different directions. Long‐range bidirectional CPET is an important reaction in many proteins and plays a key role in photosynthesis; our results are relevant in the context of photoinduced separation of protons and electrons as a means of light‐to‐chemical energy conversion. This is the first determination of β for a bidirectional CPET reaction.  相似文献   

6.
Simultaneous bidirectional forward and backward electron transfers take place on a light-exited semiconductor particle, even at the same geometric site. The potentials of the electron pathways are different, giving rise to two independent molecular conversion reactions. This type of multi-electron transfer reactions is overviewed and the stepwise unidirectional multi-electron transfer on the excited semiconductor particle is also described.  相似文献   

7.
Corn starch was modified by cross-linking with epichlorohydrin and plasticizer glycerol. X-ray diffraction studies showed that relative crystallinity of the native and cross-linked starch were similar and were not affected by cross-linking. Different films were prepared by blending corn starch, cross-linked starch or glycerol modified starch in LDPE. The mechanical properties of the films were studied for tensile strength, elongation, melt flow index, and burst strength. The properties of the blend films were compared with LDPE films. It was observed that with the blending of 7.5% native starch, there was a decrease in tensile strength, elongation and melt flow index but burst strength increased. The tensile strength, elongation and melt flow index of the films containing cross-linked starch was considerably higher than those containing native starch but the burst strength showed a reverse trend. For native starch and cross-linked starch modified with glycerol, the elongation and melt flow index of the films increased but burst strength decreased. Surface scanning of the blend films were done by scanning electron microscope. Film containing cross-linked starch/glycerol modified starch in the blend was observed to be smoother than the native starch blend films.  相似文献   

8.
Even with modern computers, it is still not possible to solve the Schrodinger equation exactly for systems with more than a handful of electrons. For many systems, the deeply bound core electrons serve merely as placeholders and only a few valence electrons participate in the chemical process of interest. Pseudopotential theory takes advantage of this fact to reduce the dimensionality of a multielectron chemical problem: the Schrodinger equation is solved only for the valence electrons, and the effects of the core electrons are included implicitly via an extra term in the Hamiltonian known as the pseudopotential. Phillips and Kleinman (PK) [Phys. Rev. 116, 287 (1959)]. demonstrated that it is possible to derive a pseudopotential that guarantees that the valence electron wave function is orthogonal to the (implicitly included) core electron wave functions. The PK theory, however, is expensive to implement since the pseudopotential is nonlocal and its computation involves iterative evaluation of the full Hamiltonian. In this paper, we present an analytically exact reformulation of the PK pseudopotential theory. Our reformulation has the advantage that it greatly simplifies the expressions that need to be evaluated during the iterative determination of the pseudopotential, greatly increasing the computational efficiency. We demonstrate our new formalism by calculating the pseudopotential for the 3s valence electron of the Na atom, and in the subsequent paper, we show that pseudopotentials for molecules as complex as tetrahydrofuran can be calculated with our formalism in only a few seconds. Our reformulation also provides a clear geometric interpretation of how the constraint equations in the PK theory, which are required to obtain a unique solution, are themselves sufficient to calculate the pseudopotential.  相似文献   

9.
We report a new approach for the facile synthesis of high-order multiblock copolymers comprising very short blocks. The approach entails sequential addition of different monomers via an iterative single electron transfer-living radical polymerization technique, allowing nearly perfect control of the copolymer microstructure. It is possible to synthesize high-order multiblock copolymers with unprecedented control, i.e., A-B-C-D-E-etc., without any need for purification between iterative 24 h block formation steps. To illustrate this concept, we report the synthesis of model P(MA-b-MA...) homopolymer and P(MA-b-nBuA-b-EA-b-2EHA-b-EA-b-nBuA) copolymer in extremely high yield. Finally, the halide end-group can be modified via "click chemistry", including thiol-bromide click chemistry, sodium methanethiosulfonate nucleophilic substitution, and atom transfer radical nitroxide coupling reaction, to yield functional, structurally complex macromolecules.  相似文献   

10.
A supramolecular multicomponent protein architecture on electrodes is developed that allows the establishment of bidirectional electron transfer cascades based on interprotein electron exchange. The architecture is formed by embedding two different enzymes (laccase and cellobiose dehydrogenase) and a redox protein (cytochrome c) by means of carboxy‐modified silica nanoparticles in a multiple layer format. The construct is designed as a switchable dual analyte detection device allowing the measurement of lactose and oxygen, respectively. As the switching force we apply the electrode potential, which ensures control of the redox state of cytochrome c. The two signal chains are operating in a non‐separated matrix and are not disturbed by the other biocatalyst.  相似文献   

11.
A set of monodisperse bent donor–acceptor–donor‐type conjugated borazine oligomers, BnNn+1 (n=1–4), incorporating electron‐rich triarylamine donor and electron‐deficient triarylborane acceptor units has been prepared through an iterative synthetic approach that takes advantage of highly selective silicon–boron and tin–boron exchange reactions. The effect of chain elongation on the electrochemical, one‐ and two‐photon properties and excited‐state photodynamics has been investigated. Strong intramolecular charge transfer (ICT) from the arylamine donors to boryl‐centered acceptor sites results in emissions with high quantum yields (Φfl>0.5) in the range of 400–500 nm. Solvatochromic effects lead to solvent shifts as large as ~70 nm for the shortest member (n=1) and gradually decrease with chain elongation. The oligomers exhibit strong two‐photon absorption (2PA) in the visible spectral region with 2PA cross sections as large as 1410 GM (n=4), and broadband excited‐state absorption (ESA) attributed to long‐lived singlet–singlet and radical cation/anion absorption. The excited‐state dynamics also show sensitivity to the solvent environment. Electrochemical observations and DFT calculations (B3LYP/6‐31G*) reveal spatially separated HOMO and LUMO levels resulting in highly fluorescent oligomers with strong ICT character. The BnNn+1 oligomers have been used to demonstrate the detection of cyanide anions with association constants of log K>7.  相似文献   

12.
Hydrogen‐release by photoexcitation, excited‐state‐hydrogen‐transfer (ESHT), is one of the important photochemical processes that occur in aromatic acids and is responsible for photoprotection of biomolecules. The mechanism is described by conversion of the initial state to a charge‐separated state along the O(N)‐H bond elongation, leading to dissociation. Thus ESHT is not a simple H‐atom transfer in which a proton and a 1s electron move together. Here we show that the electron‐transfer and the proton‐motion are decoupled in gas‐phase ESHT. We monitor electron and proton transfer independently by picosecond time‐resolved near‐infrared and infrared spectroscopy for isolated phenol–(ammonia)5, a benchmark molecular cluster. Electron transfer from phenol to ammonia occurred in less than 3 picoseconds, while the overall H‐atom transfer took 15 picoseconds. The observed electron‐proton decoupling will allow for a deeper understanding and control of of photochemistry in biomolecules.  相似文献   

13.
《中国化学快报》2023,34(7):107811
Herein, a bidirectional polarization strategy is proposed for hosting efficient and durable lithium-sulfur battery (Li-S) electrochemistry. By co-doping electronegative N and electropositive B in graphene matrix (BNrGO), the bidirectional electron redistribution enables a higher polysulfide affinity over its mono-doped counterparts, contributing to strong sulfur immobilization and fast conversion kinetics. As a result, BNrGO as the cathode host matrix realizes excellent cycling stability over 1000 cycles with a minimum capacity fading of 0.027% per cycle, and superb rate capability up to 10 C. Meanwhile, decent areal capacity (6.46 mAh/cm2) and cyclability (300 cycles) are also achievable under high sulfur loading and limited electrolyte. This work provides instructive insights into the interaction between doping engineering and sulfur electrochemistry for pursuing superior Li-S batteries.  相似文献   

14.
An enantioselective synthesis of a putative lipiarmycin aglycon was accomplished and features: 1) Brown′s enantioselective alkoxyallylboration and allylation of aldehydes, 2) chain elongation by iterative Horner–Wadsworth–Emmons olefination, 3) Evans’ aldol reaction and 4) an ene‐diene ring‐closing metathesis. A neighboring‐group‐assisted chemoselective reductive desilylation was uncovered in this study and was instrumental to the realization of the present synthesis.  相似文献   

15.
The epothilones, originally isolated from the myxobacterium Sorangium cellulosum, are macrocyclic compounds that are synthesized by a modular polyketide synthase, an enzyme complex composed of six large, multifunctional proteins. The penultimate intermediates in epothilone production, and the products of the PKS-catalyzed reactions, are epothilones D and C, which contain a 12,13-cis-double bond. The 12 and 13 positions of epothilones are generated during the fourth elongation step that is governed by module 4. Module 4 does not contain a dehydratase (DH) domain, which is required for dehydration to create the double bond. A DH domain, present in module 5 and presumed to act in the fifth elongation step at the 10 and 11 positions, was proposed to act as well to generate the 12,13-cis-double bond. Inactivation of the DH domain in module 5 resulted in the production of 10,11-dehydro-13-hydroxyepothilone D as the major product, confirming that DH5 is required for 12,13 dehydration. A mechanistic model based on domain skipping and modular stuttering is presented to explain the basis for the iterative DH5 activity observed.  相似文献   

16.
Nonreducing iterative polyketide synthases (NR-PKSs) are responsible for assembling the core of fungal aromatic natural products with diverse biological properties. Despite recent advances in the field, many mechanistic details of polyketide assembly by these megasynthases remain unknown. To expand our understanding of substrate loading, polyketide elongation, cyclization, and product release, active site occupancy and product output were explored by Fourier transform mass spectrometry using the norsolorinic acid anthrone-producing polyketide synthase, PksA, from the aflatoxin biosynthetic pathway in Aspergillus parasiticus. Here we report the simultaneous observation of covalent intermediates from all catalytic domains of PksA from in vitro reconstitution reactions. The data provide snapshots of iterative catalysis and reveal an underappreciated editing function for the C-terminal thioesterase domain beyond its recently established synthetic role in Claisen/Dieckmann cyclization and product release. The specificity of thioesterase catalyzed hydrolysis was explored using biosynthetically relevant protein-bound and small molecule acyl substrates and demonstrated activity against hexanoyl and acetyl, but not malonyl. Processivity of polyketide extension was supported by the inability of a nonhydrolyzable malonyl analog to trap products of intermediate chain lengths and by the detection of only fully extended species observed covalently bound to, and as the predominant products released by, PksA. High occupancy of the malonyl transacylase domain and fast relative rate of malonyl transfer compared to starter unit transfer indicate that rapid loading of extension units onto the carrier domain facilitates efficient chain extension in a manner kinetically favorable to ultimate product formation.  相似文献   

17.
18.
We show that the divergent integrals which appear in a direct matrix solution to the Siegert problem for autoionizing (or electron scattering) state energies and widths can be cancelled exactly. When this is done the Siegert problem becomes essentially a bound state problem. We also show that the resulting non-hermitian secular equation which requires several non-hermitian diagonalizations in the iterative solution for the complex energy can be exactly reduced by a partitioning technique to a single hermitian diagonalization (for a single open channel) with the subsequent iterative solution of a simple algebraic equation.  相似文献   

19.
In this work, we present a theoretical study on elastic electron collisions from three isoelectronic free radicals (CNN, NCN, and CCO) in the low incident energy range. More specifically, calculated differential, integral, and momentum transfer cross sections are reported in the 1-30 eV energy range. Calculations are performed in the static-exchange and static-exchange-polarization levels. The iterative Schwinger variational method is used to solve the scattering equations. Our study reveals that the calculated cross sections for the three targets are significantly different at incident energies below 10 eV. Above that energy, a remarkable similarity among the calculated results is seen.  相似文献   

20.
In fungal non‐reducing polyketide synthases (NR‐PKS) the acyl‐carrier protein (ACP) carries the growing polyketide intermediate through iterative rounds of elongation, cyclization and product release. This process occurs through a controlled, yet enigmatic coordination of the ACP with its partner enzymes. The transient nature of ACP interactions with these catalytic domains imposes a major obstacle for investigation of the influence of protein–protein interactions on polyketide product outcome. To further our understanding about how the ACP interacts with the product template (PT) domain that catalyzes polyketide cyclization, we developed the first mechanism‐based crosslinkers for NR‐PKSs. Through in vitro assays, in silico docking and bioinformatics, ACP residues involved in ACP–PT recognition were identified. We used this information to improve ACP compatibility with non‐cognate PT domains, which resulted in the first gain‐of‐function ACP with improved interactions with its partner enzymes. This advance will aid in future combinatorial biosynthesis of new polyketides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号