首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a molecular-dynamics simulation study of the bulk and liquid-vapor interfacial properties of ethanol using a polarizable force field based on the fluctuating charge (FQ) formalism, as well as the nonpolarizable CHARMM22 force field. Both models are competitive with respect to the prediction of ambient liquid properties such as liquid density, enthalpy of vaporization, dielectric constant, and self-diffusion constants. The polarizable model predicts an average condensed-phase dipole moment of 2.2 D associated with an induced liquid-phase dipole moment of 0.6 D; though qualitatively in agreement with earlier nonadditive models as well as recent Car-Parinello calculations, the current FQ model underestimates the condensed-phase dipole moment. In terms of liquid structure, both models are in agreement with recent neutron-diffraction results of liquid ethanol structure, although the polarizable model predicts the hydroxyl-hydrogen-hydroxyl-hydrogen structure factor in closer agreement with the experimental data. In terms of interfacial properties, both models predict ambient surface tension to within 4% of the experimental value of 22.8 dyncm, while overestimating the surface excess entropy by almost a factor of 2. Both models display the characteristic preferential orientation of interfacial molecules. The polarizable model allows for a monotonic variation of the average molecular dipole moment from the bulk value to that of the vapor phase. Consequently, there is a dramatic difference in the surface potential predicted by the polarizable and nonpolarizable models. The polarizable model estimates a surface potential of -209+/-3 mV, while the nonpolarizable model yields a value of -944+/-10 mV. Finally, based on the vapor-liquid equilibrium simulation data from several temperatures, we estimate the critical properties of both models. As observed with other FQ models for associating fluids (such as water and methanol), and counter to what one would anticipate by modeling more physically the electrostatic response to local environment, the current FQ model underestimates the critical temperature and overestimates the critical density of ethanol; moreover, the FQ model is, in this respect, equivalent to the underlying fixed-charge model. These results further suggest the need to revisit polarizable models in terms of quantitative vapor-liquid equilibrium prediction.  相似文献   

2.
Three different models of AgI are studied by molecular dynamics simulations. The first one is the rigid ion model (RIM) with the effective pair potential of the Vashishta and Rahman form and the parametrization proposed by Shimojo and Kobayashi. The other two are polarizable ion models in which the induced polarization effects have been added to the RIM effective pair potential. In one of them (PIM1), only the anions are assumed to be polarizable by the local electric field. In the other one (PIM2s), the silver polarization is also included, and a short-range overlap-induced polarization opposes the electrically induced dipole moments. This short-range polarization is proved to be necessary to avoid overpolarization when both species are assumed to be polarizable. The three models reproduce the superionic character of alpha-AgI at 573 K and the liquid behavior of molten AgI at 923 K. The averaged spatial distribution of the cations in the alpha-phase obtained for PIM1 appears to be in better agreement with experimental data analysis. The PIM1 also reproduces the structure factor prepeak at about 1 A(-1) observed from neutron diffraction data of molten AgI. The three models retain in the liquid phase the superionic character of alpha-AgI, as the mobility of the cations is significantly larger than that for the anions. The ionic conductivity for the polarizable ion models is in better agreement with experimental data for alpha-AgI and molten AgI.  相似文献   

3.
In this work, we develop a simple potential model for polar molecules which represents effectively and accurately the thermodynamics of dilute gases. This potential models dipolar interactions whose nonpolar part is either spherical, as in Stockmayer (SM) molecules, or diatomic, as for 2-center Lennard-Jones molecules (2CLJ). Predictions of the second virial coefficient for SM and polar 2CLJ fluids for various dipole moments and elongations agree very well with results of recent numerical calculations by C. Vega and co-workers (Phys. Chem. Chem Phys. 2002, 4, 3000). The model is used to predict the critical temperature of Stockmayer fluids for variable dipole moment and is applied to HCl as an example of a real polar molecule.  相似文献   

4.
5.
A number of simple pair interaction potentials of the carbon dioxide molecule are investigated and found to underestimate the magnitude of the second virial coefficient in the temperature interval 220-448 K by up to 20%. Also the third virial coefficient is underestimated by these models. A rigid, polarizable, three-site interaction potential reproduces the experimental second and third virial coefficients to within a few percent. It is based on the modified Buckingham exp-6 potential, an anisotropic Axilrod-Teller correction, and Gaussian charge densities on the atomic sites with an inducible dipole at the center of mass. The electric quadrupole moment, polarizability, and bond distances are set to equal experiment. Density of the fluid at 200 and 800 bars pressure is reproduced to within some percent of observation over the temperature range 250-310 K. The dimer structure is in passable agreement with electronically resolved quantum-mechanical calculations in the literature, as are those of the monohydrated monomer and dimer complexes using the Gaussian charge polarizable model water potential. Qualitative agreement with experiment is also obtained, when quantum corrections are included, for the relative stability of the trimer conformations, which is not the case for the pair potentials.  相似文献   

6.
We report grand canonical ensemble Monte Carlo (MC) simulation and theoretical studies of the structural properties of a model system described by an effective interparticle interaction potential, which incorporates basic interaction terms used in modeling of various complex fluids composed of mesoscopic particles dispersed in a solvent bath. The MC results for the bulk radial distribution function are employed to test the validity of the hard-sphere bridge function in combination with a modified hypernetted chain approximation (MHNC) in closing the Ornstein-Zernike (OZ) integral equation, while the MC data for the density profiles in different inhomogeneous environments are used to assess the validity of the third-order+second-order perturbation density functional theory (DFT). We found satisfactory agreement between the results predicted by the pure theories and simulation data, which classifies the proposed theoretical approaches as convenient tools for the investigation of complex fluids. The present investigation indicates that the bridge function approximation and density functional approximation, which are traditionally used for the study of neutral atomic fluids, also perform well for complex fluids only on condition that the underlying effective potentials include a highly repulsive core as an ingredient.  相似文献   

7.
8.
9.
10.
A method of obtaining the potential of average force between two ions immersed in a polarizable hard sphere fluid is described. The ions and the solvent particles may have different hard sphere diameters. For large values of the reduced polarizability of the solvent particles, *, the potential of average force rises near contact much more steeply than the primitive model would permit and also has maxima and minima vanishing at larger distances, in semiquantitative agreement with the similar results of Patey and Valleau. The oscillating character of the potential of average force is due above all to the oscillations of the radial distribution function between the ion and polarizable hard sphere.  相似文献   

11.
In this paper we have developed an effective computational procedure for the structural and dynamical investigation of ions in aqueous solutions. Quantum mechanical potential energy surfaces for the interaction of a transition metal ion with a water molecule have been calculated taking into account the effect of bulk solvent by the polarizable continuum model (PCM). The effective ion-water interactions have been fitted by suitable analytical potentials, and have been utilized in molecular dynamics (MD) simulations to obtain structural and dynamical properties of the ionic aqueous solutions. This procedure has been successfully applied to the Co2+-H2O open-shell system and, for the first time, Co-oxygen and Co-hydrogen pair potential functions have been determined and employed in MD simulations. The reliability of the whole procedure has been assessed by applying it also to the Zn2+ and Ni2+ aqueous solutions, and the structural and dynamical properties of the three systems have been calculated by means of MD simulations and have been found to be in very good agreement with experimental results. The structural parameters of the first solvation shells issuing from the MD simulations provide an effective complement to extended X-ray absorption fine structure (EXAFS) experiments.  相似文献   

12.
We investigate the post-translational generation of Gla (γ-carboxy glutamic acid) from Glu (glutamic acid) by vitamin K carboxylase (VKC) in solvent. VKC is thought to convert vitamin K, in the vitamin K cycle, to an alkoxide-epoxide form, which then reacts with CO(2) to generate an essential ingredient in blood coagulation, γ-carboxyglutamic acid (Gla). The generation of Gla from Glu is found to be exergenic (-15 kcal/mol) in aqueous solution with the SM6 method. We also produced the free energy profile for this model biochemical process with other solvent methods (polarizable continuum model, dielectric polarizable continuum model) and different dielectric constants. The biological implications are discussed.  相似文献   

13.
14.
Molecular dynamics simulations for the liquid-vacuum interface of the ionic liquid 1-ethyl-3-methylimidazolium nitrate (EMIM+/NO3-) were performed for both electronically polarizable and nonpolarizable potential energy surfaces. The interfacial structural properties, such as the oscillation in the number density profile, the orientational ordering, and the local clustering in the interfacial region, were calculated. The simulations with both the polarizable and nonpolarizable model demonstrate the existence of an inhomogeneous interfacial structure normal to the surface layer. It was found for both models that the ethyl tail group on EMIM+ is likely to protrude outward from the surface. In the outmost surface layer, the cation is likely to lie on the surface with the imidazolium ring parallel to the interface, while there is a second region with enhanced density from that in the bulk where the cation preferably slants with the imidazolium ring tending to be perpendicular to the surface. The results also reveal that the electronic polarization effect is important for the ionic liquid interface. It is found that the cation is likely to be segregated at the ionic liquid surface for the polarizable model, while for the nonpolarizable model, the anion is found to be more likely to exhibit such behavior. The surface tension of the polarizable model (58.5 +/- 0.5 mN/m) is much smaller than that of the nonpolarizable model (82.7 +/- 0.6 mN/m), in better agreement with extrapolated experimental measurements on similar ionic liquid systems.  相似文献   

15.
In this work, we have developed a polarizable classical interaction potential to study actinoids(III) in liquid water. This potential has the same analytical form as was recently used for lanthanoid(III) hydration [M. Duvail, P. Vitorge, and R. Spezia, J. Chem. Phys. 130, 104501 (2009)]. The hydration structure obtained with this potential is in good agreement with the experimentally measured ion-water distances and coordination numbers for the first half of the actinoid series. In particular, the almost linearly decreasing water-ion distance found experimentally is replicated within the calculations, in agreement with the actinoid contraction behavior. We also studied the hydration of the last part of the series, for which no structural experimental data are available, which allows us to provide some predictive insights on these ions. In particular we found that the ion-water distance decreases almost linearly across the series with a smooth decrease of coordination number from nine to eight at the end.  相似文献   

16.
Classical molecular dynamics simulations with polarizable potential models were carried out to quantitatively determine the effects of KCl salt concentrations on the electrostatic surface potentials of the vapor-liquid interface of water. To the best of our knowledge, the present work is the first calculation of the aqueous electrolyte surface potentials. Results showed that increased salt concentration enhanced the electrostatic surface potentials, in agreement with the corresponding experimental measurements. Furthermore, the decomposition of the potential drop into contributions due to static charges and induced dipoles showed a very strong effect (an increase of approximately 1 V per 1M) due to the double layers formed by KCl. However, this was mostly negated by the negative contribution from induced dipoles, resulting in a relatively small overall increase ( approximately 0.05 V per 1M) with increased salt concentration.  相似文献   

17.
Excited-state quantum mechanics/molecular mechanics molecular dynamics simulations are performed, to examine the solvent effects on the fluorescence spectra of aqueous formaldehyde. For that purpose, the analytical energy gradient has been derived and implemented for the linear-response time-dependent density functional theory (TDDFT) combined with the effective fragment potential (EFP) method. The EFP method is an efficient ab initio based polarizable model that describes the explicit solvent effects on electronic excitations, in the present work within a hybrid TDDFT/EFP scheme. The new method is applied to the excited-state MD of aqueous formaldehyde in the n-π* state. The calculated π*→n transition energy and solvatochromic shift are in good agreement with other theoretical results.  相似文献   

18.
In this paper, we present a state-of-the-art 100 ns molecular dynamics simulation of a cadmium(II) aqueous solution that highlights a very flexible ion first coordination shell which transits between hexa- and heptahydrated complexes. From this investigation, a dynamical picture of the water exchange process emerges that takes place through an associative mechanism for the solvent substitution reaction. Our procedure starts from the generation of an effective two-body potential from quantum mechanical ab initio calculations in which the many-body ion-water terms are accounted for by the polarizable continuum method (PCM). This approach is computationally very efficient and has allowed us to carry out extremely long molecular dynamics simulations, indispensable to reproduce the dynamic properties of the cadmium(II) aqueous solution. Quantum mechanical ab initio calculations of the hexa- and heptahydrated complexes extracted from MD configurations have revealed stable minima for both clusters with the water molecules arranged in T(h)() and C(2) symmetries in the hexa- and heptahydrated complexes, respectively, with a slight energetic preference for the heptahydrated one. Finally, a comparison of the calculated hexa- and heptahydrated cluster IR and Raman spectra with the experimental data in the literature, has demonstrated that the IR spectroscopy is not able to distinguish between the two species, whereas the Raman spectrum of the Cd(2+)-(H(2)O)(7) cluster provides a better agreement with the experimental data.  相似文献   

19.
Recently, many polarizable force fields have been devised to describe induction effects between molecules. In popular polarizable models based on induced dipole moments, atomic polarizabilities are the essential parameters and should be derived carefully. Here, we present a parameterization scheme for atomic polarizabilities using a minimization target function containing both molecular and atomic information. The main idea is to adopt reference data only from quantum chemical calculations, to perform atomic polarizability parameterizations even when relevant experimental data are scarce as in the case of electronically excited molecules. Specifically, our scheme assigns the atomic polarizabilities of any given molecule in such a way that its molecular polarizability tensor is well reproduced. We show that our scheme successfully works for various molecules in mimicking dipole responses not only in ground states but also in valence excited states. The electrostatic potential around a molecule with an externally perturbing nearby charge also exhibits a near‐quantitative agreement with the reference data from quantum chemical calculations. The limitation of the model with isotropic atoms is also discussed to examine the scope of its applicability. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
The aim of this work is to develop spherically symmetric effective potentials allowing bulk thermodynamic properties and surface tension of molecular fluids to be predicted semiempirically by the use of statistical mechanical methods. Application is made to the straight chain alkane fluids from methane to decane. An effective Lennard-Jones potential is generated with temperature-dependent parameters fitted to the critical temperature and pressure and to Pitzer's acentric factor. Insertion of this potential into the generalised van der Waals (GvdW) density functional theory yields bulk properties in good agreement with experiments. The surface tension is overestimated for the longer alkane chains. In order to account for the surface tension, an independently adjustable attractive range of interaction is required and obtained through the use of square-well potentials chosen so as to leave the bulk thermodynamics unaltered while the attractive range is fitted to the surface tension at a single temperature. The GvdW theory, which includes binding energy, entropic and profile shape contributions, then generates surface tension estimates that are of good accuracy over the full range of available experimental data. It appears that, given a sufficiently flexible form, effective potentials combined with simple statistical mechanical theory can reproduce both bulk and non-uniform fluid data of great variety in an insighful and practically useful way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号