首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[Cu(bpea)Cl]ClO4 (1) and a new copper(II) complex [Cu(bpma)(Ph-COO)(H2O)]ClO4 (2) [bpea?=?N,N-bis(2-pyridylmethyl)ethylamine; bpma?=?N,N-bis(2-pyridylmethyl)methylamine] have been synthesized. Complex 2 was crystallized in monoclinic space group P21/c with unit cell parameters a ?=?16.460(6)?Å, b ?=?11.222(4)?Å, c?=?12.522(5)?Å, and β?=?97.985(6)°. Interactions of the complexes with calf thymus DNA (CT-DNA) have been investigated by UV absorption, fluorescence, and cyclic voltammetry; thus, modes of CT-DNA binding for the complexes have been proposed. Furthermore, DNA cleavage activities by the complexes were performed in the absence of any external agents. The influence of complex concentration or reaction time on the DNA cleavage was studied.  相似文献   

2.
A water-soluble zinc complex, [Zn(bpea)Cl2] (1) (bpea?=?N,N-bis(2-pyridylmethyl)ethylamine), was prepared to serve as a nuclease mimic. The complex was characterized by X-ray, infrared, and UV spectroscopy. Interactions of the complex with calf thymus-DNA (ct-DNA) have been investigated by UV absorption and fluorescence spectroscopies; the mode of ct-DNA binding for 1 has been proposed. DNA cleavage activities by 1 were performed in the absence of external agents. The influences of different complex concentrations or reaction times on DNA cleavage were studied.  相似文献   

3.
A detailed thermal analysis of iron and cobalt surfactant complexes of the type [M(CH3COO)4]2?[C12H25NH3 +]2 has been carried out using Thermogravimetric (TG) analysis at different heating rates (i.e., 5, 10, 15, and 20 °C min?1). It has been observed that iron complex decomposes by a different mechanism compared to other transition metal complexes. Metal is the final product instead of metal oxide. Combining the results from our previous study, first row transition metal complexes exhibit an order of stability in agreement with the famous Irving Williams series, i.e., the apparent activation energy, E for thermal decomposition varies as: E Fe > E Co < E Ni < E Cu > E Zn (exception being iron because of different decomposition mechanism). Thermal decomposition parameters have been measured and compared using the multiple heating rate method of Flynn–Wall–Ozawa. Further, molecular modeling calculations have been carried out to compare the experimental TG data with theoretical computations for the synthesized metal surfactant complexes. Minimum energy optimized structures for the complexes have been obtained using Gaussian software.  相似文献   

4.
Incorporation of N,N-bis(2-pyridylmethyl)-beta-alanyl 2'-amino-LNA (bipyridyl-functionalized 2'-amino locked nucleic acid) monomers into DNA strands enables high-affinity targeting of complementary DNA with excellent Watson-Crick selectivity in the presence of divalent metal ions. Positioning of bipyridyl-functionalized 2'-amino-LNA monomers in two complementary DNA strands in a "3'-end zipper" constitution allows modulation of duplex stability, i.e., a strong stabilizing effect with one equivalent of divalent metal ion per bipyridyl pair, or a strong destabilizing effect with an excess of divalent metal ions.  相似文献   

5.
The synthesis and characterization of the monomeric, two-coordinate transition-metal complexes (2,6-Mes(2)C(6)H(3))(2)M (Mes = mesityl, 2,4,6-Me(3)C(6)H(2), M = Mn, Fe, Co) are reported; (2,6-Mes(2)C(6)H(3))(2)Co is the first structurally authenticated two-coordinate, homoleptic cobalt(II) complex featuring sigma-bonded aryl ligands.  相似文献   

6.
7.
Current micro review focuses on Earth-abundant molecular transition metal photosensitizers and catalysts for dye sensitized photoelectrochemical cells for direct solar energy storage. The possibility of direct conversion of solar energy into fluids (ethanol or methanol) or gases (hydrogen or methane) in a cost efficient way is considered a disruptive and innovative breakthrough for large-scale implementation of solar fuel technologies. At present, it is a fast-growing research area and the most outstanding results are highlighted.  相似文献   

8.
Hydrofluorothermal methods are shown to offer a facile route to a very large family of mid-late first row, transition metal fluorophosphates with 50 new compounds identified to date for manganese(III), iron(III), cobalt(II), and copper(II). Reactions of a transition metal fluoride with a phosphate source in a very low-water, high-fluoride content system and in the presence of framework charge balancing metal cations or template molecular cations, lead to materials with structures formed from linked M(O,F)(n) and P(O,F)(n) polyhedra. The structures of these materials, which contain a variety of 1, 2, and 3-dimensional motifs with a level of framework termination dependent upon their fluoride content, show numerous useful characteristics for functionality and applications. The new and unusual features of these fluorophosphate materials include interlayer spaces or channels lined with fluoride ions, metal polyhedra, M(O,F)(n), linked through vertex, edge, or face-sharing, and μ(2), μ(3), and μ(4) bridging fluoride ions. Preliminary characterization of the properties of some of these metal fluorophosphates is reported, including reductive lithium ion insertion, of interest for Li-ion battery positive electrodes, ion exchange reactions, the formation of nanoporous material derivatives through template destruction, and magnetic susceptibility behaviors.  相似文献   

9.
A series of tetragonally distorted square pyramids of formula N2S2M(NO) (M = Fe, Co) is prepared and characterized by nu(NO) IR and EPR spectroscopies, magnetism and electrochemical properties, as well as solid-state crystal structure determinations. While the nu(NO) IR frequencies and the angleM-N-O angles indicate differences in the electronic environment of NO consistent with the Enemark-Feltham notation of [Fe(NO)]7 and [Co(NO)]8, the reduction potentials, assigned to [Fe(NO)]7 + e- <==> [Fe(NO)]8 and [Co(NO)]8 + e- <==> [Co(NO)]9 respectively, are very similar, and in cases identical, for most members of the series. Coupled with the potential for the M(NO) units to breathe out of and into the N2S2 core plane are unique S-M-N-O torsional arrangements and concomitant pi-bonding interactions which may account for the unusual coherence of reduction potentials within the series.  相似文献   

10.
11.
A series of pseudo-octahedral metal (M = Mn, Fe, Co, Ni, Cu, Zn) complexes 4 of a new redox-active ligand, 2,4,6,8-tetra(tert-butyl)-9-hydroxyphenoxazin-1-one 3, have been synthesized, and their molecular structures determined with help of X-ray crystallography. The effective magnetic moments of complexes 4 (M = Mn, Fe, Co, and Ni) measured in the solid state and toluene solution point to the stabilization of their high-spin electronic ground states. Detailed information on the electronic structure of the complexes and their redox-isomeric forms has been obtained using density functional theory (DFT) B3LYP*/6-311++G(d,p) calculations. The energy disfavored low-spin structures of manganese, iron, and cobalt complexes have been located, and based on the computed geometries and distribution of spin densities identified as Mn(IV)[(Cat-N-SQ)](2), Fe(II)[Cat-N-BQ)](2), and Co(II)[Cat-N-BQ)](2) compounds, respectively. It has been shown that stabilization of the high-spin structures of complexes 4 (M = Mn, Fe, Co) is caused by the rigidity of the molecular framework of ligands 3 that sterically inhibits interconversions between the redox-isomeric forms of the complexes. The calculations performed on complex 4 (M = Co) predict that a suitable structural modification that might provide for stabilization of the low-spin electromeric forms and create conditions for the valence tautomeric rearrangement via stabilization of the low-spin electromer and narrowing energy gap between the low-spin ground state tautomer and the minimal energy crossing point on the intersection of the potential energy surfaces of the interconverting structures consists in the replacement of an oxygen in the oxazine ring by a bulkier sulfur atom.  相似文献   

12.
The stability constants of the ternary M(Bic)(Bzim)~ complexes, where M~(2 )=Cu~(2 ), Ni~(2 ) or Zn~(2 ), Bic~-=the anion of N, N-bis(2-hydroxyethyl) glycine and Bzim = benzimidazole, were determined by potentiometric pH titration in aqueous solution. One of them (M~(2 ) = Cu~(2 )) was also separately determined by spectrophotometry. The results show that these ternary complexes are stabler than expected on statistical grounds. The enhanced stability of the ternary M(Bic) (Bzim)~ complexes is attributed to the π_A-π_B cooperative effect between Bic~- and benzimidazole. Besides, compared with Cu(Bic) (Bzim)~ and Ni(Bic) (Bzim)~ , the ternary Zn(Bic)(Bzim)~ complex has relatively high stability. The crystal structure of [Cu(Bic)(Bzim)]ClO_4 was determined by single crystal X-ray diffraction techniques. The copper atom has a trigonal-bipyramidal geometry, the basal plane is formed by an oxygen atom of the carboxylato group and two hydroxyl oxygen atoms, the apical position is occupied by a nitrogen a  相似文献   

13.
Key steps in electro-catalytic water oxidation on binuclear Transition Metal (TM) sites are addressed. These comprise (a) two one-electron oxidation steps of TM-OH moieties to form the corresponding two TM=O oxy-groups, and (b) a chemical step whereby the two oxy-species form a TM-O-O-TM peroxy-bridge. A test rig representing a generic low crystal field oxide support is described and employed. The energetics for homo-nuclear Cr(III-V), Mn(III-V), Fe(II-IV) and Co(II-IV) sites are compared. The uniqueness of the tyrosine/tyrosyl-radical (TyrOH/TyrO˙) reference potential for driving the oxidation steps is demonstrated. The oxidation of adsorbed TM-OH moieties on binuclear Mn and Co candidates requires an overpotential of approximately 0.5 V relative to the chosen reference potential. Correspondingly, the subsequent O-O bond formation becomes strongly exothermic, of the order of 1 eV. The hydroxide oxidation steps on binuclear CrCr and FeFe systems are, in total, exothermic by 1.21 and 0.61 eV, respectively, relative to the TyrOH/TyrO˙ reference potential. Consequently, the chemical step for transforming the TM=O moieties to the peroxo species is found to be endothermic by the order of 0.7 eV. Based on these findings, a catalyst containing one TM from each class is suggested. The validity of this concept is demonstrated for the FeCo binuclear site. The results are discussed in the context of experimental observations, which display a preference for mixed oxide systems.  相似文献   

14.
Four rhenium(IV)-M(II) bimetallic complexes of formula [ReCl(4)(mu-ox)M(dmphen)(2)].CH(3)CN with M = Mn (1), Fe (2), Co (3), and Ni (4) (ox = oxalate anion, dmphen = 2,9-dimethyl-1,10-phenanthroline) have been synthesized and the crystal structures of 1 and 3 determined by single-crystal X-ray diffraction. 1 and 3 are isostructural and crystallize in the monoclinic system, space group P2(1)/c, with a = 16.008(4) A, b = 12.729(2) A, c = 18.909(5) A, beta = 112.70(2) degrees, and Z = 4 for 1 and a = 15.998(4) A, b = 12.665(2) A, c = 18.693(5) A, beta = 112.33(2) degrees, and Z = 4, for 3. The structure of 1 and 3 is made up of neutral [ReCl(4)(mu-ox)M(dmphen)(2)] bimetallic units (M = Mn (1), Co (3)) and acetonitrile molecules of crystallization. M(II) and Re(IV) metal ions exhibit distorted octahedral coordination geometries being bridged by a bis(bidentate) oxalato ligand. The magnetic behavior of 1-4 has been investigated over the temperature range 2.0-300 K. A very weak antiferromagnetic coupling between Re(IV) and Mn(II) occurs in 1 (J = -0.1 cm(-)(1)), whereas a significant ferromagnetic interaction between Re(IV) and M(II) is observed in 2-4 [J = +2.8 (2), +5.2 (3), and +5.9 cm(-)(1) (4)].  相似文献   

15.
The superoxide dismutase (SOD) activity of iron(II) tetrakis-N,N,N',N'(2-pyridylmethyl)ethylenediamine complex (Fe-TPEN) was reexamined using a pulse radiolysis method. In our previous study (J. Biol. Chem., 264, 9243-9249 (1989)), we reported that this complex has a potent SOD activity in a cyt. c (cytochrome c)-based system (IC50 = 0.8 microM) and protects E. coli cells against paraquat toxicity. The present pulse radiolysis experiment revealed that Fe(II)TPEN reacts stoichiometrically with superoxide to form Fe(III)TPEN with a second-order rate constant of 3.9 x 10(6) M-1 S-1 at pH 7.1, but superoxide did not reduce Fe(III)TPEN to Fe(II)TPEN. The reaction of Fe(III)TPEN and superoxide was biphasic. In the fast reaction, an adduct (Fe(III)TPEN-superoxide complex) was formed at the second-order rate constant of 8.5 x 10(5) M-1 S-1 at pH 7.4. In the slow one, the adduct reacted with another molecule of the adduct, regenerating Fe(III)TPEN. In the cyt. c method with catalase, this Fe(III)TPEN-superoxide complex showed cyt. c oxidation activity, which had led to overestimation of its SOD activity. Based on the titration data, the main species of complex in aqueous media at neutral pH was indicated to be Fe(III)TPEN(OH-). A spectral change after the reduction with hydrated electron indicates that the OH- ion coordinates directly to Fe(III) by displacing one of the pyridine rings. The X-ray analysis of [Fe(II)TPEN]SO4 supported this structure. From the above results we propose a novel reaction mechanism of FeTPEN and superoxide which resembles a proton catalyzed dismuting process, involving Fe(III)TPEN-superoxide complex.  相似文献   

16.
采用基于密度泛函理论的计算方法,对正二十面体金属X13(X=Cr,Mn,Fe,Co)中性和荷电团簇进行了全面的结构优化计算,研究了荷电对团簇的稳定性和磁性的影响.结果表明:荷负电能够使团簇的稳定性增强;荷电对不同团簇的原子间距离的影响不同;同时荷电对不同团簇磁性的影响也是不一样的,尤其是荷负电能够使Fe13和Co13团簇的磁性大大增强;荷电对不同团簇磁性的影响不是通过原子间距离的变化来实现的,而是受到原子内部电荷的转移和杂化程度的影响.  相似文献   

17.
二维Janus WSSe作为一种新兴的过渡金属硫族化合物(TMDs)材料,由于其打破了面外镜像对称性,且具有内在垂直压电和强Rashba自旋轨道耦合效应等丰富的物理特性,在自旋电子器件中具有巨大的应用潜力。本文基于密度泛函理论的第一性原理平面波赝势方法计算了过渡金属原子X(X=Mn、Fe、Co)掺杂单层Janus WSSe的电子结构、磁性和光学性质。结果表明:在Chalcogen-rich(硫族元素为多数元素)条件下的掺杂比在W-rich(钨元素为多数元素)条件下的掺杂展现出更高的稳定性,且掺杂后所有体系均表现出磁性。值得一提的是,对该体系进行Mn掺杂后,自旋向上通道出现杂质能级,WSSe由原来的非磁性半导体转变成磁矩为1.043μB的铁磁性半金属。而Fe、Co的掺杂使得自旋向上通道和自旋向下通道均出现杂质能级,呈现出磁矩分别为1.584μB、2.739μB的金属性。此外,掺杂体系的静态介电常数都显著增加,极化程度增强,且介电函数虚部和光吸收峰都发生了红移,说明掺杂有利于对可见光的吸收。  相似文献   

18.
The chromium (III) complex [Cr(NPyPzCa)Cl2(H2O)].(CH3)2O (1) (NPyPzCa stands for N-(2-pyridylmethyl)-2-pyrazinecarboxamide) has been synthesized and characterized by single crystal X-ray diffraction. The Cr(III) atom exhibits an octahedral geometry due to the coordination of three donor atoms from carboxamide ligand, two chlorine atoms and one water molecule. There is O–H?O hydrogen bonds and also π–π interactions between adjacent pyridine and ?pyrazine rings that seem to be effective in the stabilization of the crystal packing. The ?topological and energetic properties of the electron density distribution of all the metal–ligand ?bonding interactions in this complex have also been calculated and studied at ? several DFT levels. According to the results, metal–ligand bonding interactions belong (from the topological and energetic point of view) to new interactions that represent a mix of closed-shell (ionic) and shared (covalent) characters.  相似文献   

19.
合成了二(2-苯并咪唑亚甲基)胺合Zn(Ⅱ)高氯酸盐配合物[C16H15N5Zn·(ClO4)2·3H2O和C32H30N10Zn·(ClO4)2·C2H5OH,进行了元素分析、红外和紫外表征。对后者采用X射线方法测定了晶体结构,并采用G94W程序进行了量子化学计算,利用邻苯三酚自氧化法测定了所合成配合物的生物活性。  相似文献   

20.
Six mononuclear complexes are reported with the tetradentate ligand N,N′-bis(2-pyridylmethyl)-1,3-propanediamine, (abbreviated as pypn) i.e. [Cu(pypn)(ClO4)2](H2O)1/2 (1), [Fe(pypn)Cl2](NO3) (2), [Zn(pypn)Cl](ClO4) (3), [Co(pypn)(NCS)2](ClO4) (4), [Co(pypn)(N3)2](ClO4) (5), [Zn(pypn)(NCS)2] (6). The synthesis and X-ray crystal structures of all six compounds and their spectroscopic properties are presented.The geometry of the Cu2+, Co3+, Zn2+, Fe3+ ions is essentially octahedrally based, with the mm conformation (for Cu) and msf conformations for the other 3 metal ions; in compound 3 the geometry around the Zn2+ is distorted trigonal bipyramidal. The stabilisation of the crystal lattices is maintained by interesting, relative strong hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号