首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yang ZD  Feng JK  Ren AM 《Inorganic chemistry》2008,47(23):10841-10850
In this paper, we have theoretically investigated bis((4-phenylethynyl)phenyl) ethynyl)bis(trimethylphosphine)platinum(II) (PE2) and its analogs three platinum acetylide complexes (1-3) that feature highly pi-conjugated ligands (alkynyl-dimethylfluorene substituted with electron-donating or -withdrawing moieties). The geometrical and electronic structures are calculated at the ECP60MWB//6-31G*(H, C, P, N, S) basis set level by the density functional theory (DFT) method; one-photon absorption properties have been calculated by using time-dependent DFT (TDDFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods, and two-photon absorption (TPA) properties are obtained with the ZINDO/sum-over-states method. The values of beta(sp) and beta(d) for Pt are adjusted to -1 eV and -28.5 eV, respectively, to make one-photon absorption spectra calculated by ZINDO closest to the experimental data and TDDFT results. The calculated results indicate that all molecules in this work (involving cis isomers of molecules 1-3) take on two TPA peaks in the 600-800 nm region. The peak at 700-750 nm should not be simply attributed to the appearance of noncentrosymmetric cis isomers in solution, although trans and cis isomers adhere to a different selection rule. Every TPA peak results from its transition character. Molecules 1-3 show greater two-photon absorption strength compared with PE2 and retain good transparency.  相似文献   

2.
To explore the photophysics of platinum acetylide chromophores with strong two-photon absorption cross-sections, we have investigated the synthesis and spectroscopic characterization of a series of platinum acetylide complexes that feature highly pi-conjugated ligands substituted with pi-donor or -acceptor moieties. The molecules (numbered 1-4) considered in the present work are analogs of bis(phenylethynyl)bis(tributylphosphine)platinum(II) complexes. Molecule 1 carries two alkynyl-benzothiazolylfluorene ligands, and molecule 2 has two alkynyl-diphenylaminofluorene ligands bound to the central platinum atom. Compounds 3 and 4 possess two dihexylaminophenyl substituents at their ends and differ by the number of platinum atoms in the oligomer "core" (one vs two in 3 and 4, respectively). The ligands have strong effective two-photon absorption cross-sections, while the heavy metal platinum centers give rise to efficient intersystem crossing to long-lived triplet states. Ultrafast transient absorption and emission spectra demonstrate that one-photon excitation of the chromophores produces an S1 state delocalized across the two conjugated ligands, with weak (excitonic) coupling through the platinum centers. Intersystem crossing occurs rapidly (Kisc approximately 1011 s-1) to produce the T1 state, which is possibly localized on a single conjugated fluorenyl ligand. The triplet state is strongly absorbing (epsilonTT > 5 x 104 M-1 cm-1), and it is very long-lived (tau > 100 micro s). Femtosecond pulses were used to characterize the two-photon absorption properties of the complexes, and all of the chromophores are relatively efficient two-photon absorbers in the visible and near-infrared region of the spectrum (600-800 nm). The complexes exhibit maximum two-photon absorption at a shorter wavelength than 2lambda for the one-photon band, consistent with the dominant two-photon transition arising from a two-photon-allowed gerade-gerade transition. Nanosecond transient absorption experiments carried out on several of the complexes with excitation at 803 nm confirm that the long-lived triplet state can be produced efficiently via a sequence involving two-photon excitation to produce S1, followed by intersystem crossing to produce T1.  相似文献   

3.
The electronic structures, one-photon absorption (OPA), and two-photon absorption (TPA) properties of a series of ferrocene-based chromophores with TCF-type acceptors (TCF = 2-dicyanomethylene-3-cyano-4-methyl-2,5-dihydrofuran) have been studied by using the ZINDO-SOS method. The results have revealed that OPA and TPA of ferrocenyl derivatives are affected by the strength of the acceptor, especially the pi-bridge conjugation length. The TPA cross section increases with increasing acceptor strength and pi-bridge conjugation length. The TCF-type acceptor with a phenyl group can lead to a larger TPA cross section. Quadrupole molecules have the largest TPA cross sections (2000-3000 GM), which are about 4 times that of the corresponding dipolar molecules, indicating larger interactions between the top and bottom branches. Finally, the origins of the two-photon excitations for ferrocenyl derivatives are analyzed. The calculations show that ferrocenyl derivatives with TCF-type acceptors (especially quadrupole molecules) are promising candidates for TPA materials.  相似文献   

4.
In this work, we describe the spectroscopic properties of a series of platinum complexes containing one acetylide ligand per platinum, having the chemical formula trans-Pt(PBu(3))(2)((C[triple bond]CC(6)H(4))(n)()-H)Cl, n = 1-3 (designated as half-PEn-Pt) and compare their spectroscopic behavior with the well-characterized series trans-Pt(PBu(3))(2)((C[triple bond]CC(6)H(4))(n)-H)(2), n = 1-3 (designated as PEn-Pt). This comparison aims to determine if the triplet state of PEn-Pt is confined to one ligand or delocalized across the central platinum atom. We measured ground-state absorption spectra, fluorescence spectra, phosphorescence spectra, and triplet-state absorption spectra. The ground-state absorption spectra and fluorescence spectra both showed a blue shift when comparing half-PEn-Pt with PEn-Pt, showing the S(1) state is delocalized across the platinum. In contrast, the phosphorescence spectra of the two types of compounds had the same 0-0 band energy, showing the T(1) state was confined to one ligand in PEn-Pt. The triplet state absorption spectra blue shifted when comparing half-PEn-Pt with PEn-Pt, showing the T(n) state was delocalized across the central platinum. This comparison supports recently published work that suggested this confinement effect (Rogers, J. E et al. J. Chem. Phys. 2005, 122, 214701).  相似文献   

5.
The results are given of an investigation of the changes in the physicochemical properties of the chromophores of lignin substances of effluents by photopotential, luminescence, and ESR spectroscopy and the polarographic determination of oxygen as a function of the number of quanta of incident energy in the interval from 300 to 600 nm. It has been established that under the action of light a change in the redox properties, an increase in the rate of consumption of oxygen, the formation of radical intermediate products, and the appearance of excited triplet states of the lignin chromophores take place in the lignin substances. Action spectra of the photopotential, of the yield of EPCs of free radicals, and of the consumption of oxygen by the lignin substances in the interval from 300 to 600 nm have been obtained.Siberian Scientific-Research Institute of Cellulose and Board Bratsk. Translated from Khimiya Prirodnykh Soedinenii, No. 2, pp. 269–274, March–April, 1987.  相似文献   

6.
Four free-base corroles with electron-donating or electron-withdrawing groups on the para or 2 through 6-positons of the meso phenyl rings were prepared via either Paolesse or Gross conditions and investigated for their absorption and emission properties. The triaryl corroles 5,10,15-triphenylcorrole, 5,10,15-tris(pentafluorophenyl)corrole, 5,10,15-tris(p-nitrophenyl)corrole, and 5,10,15-tris(p-methoxyphenyl)corrole were examined. Absorption, steady-state, and time-resolved fluorescence measurements were performed on all compounds in both nonpolar (dichloromethane) and polar (dimethylacetamide) solvents. The experimental evidence points to hydrogen bonding with an internal N-H group as the most likely factor in the solvent-dependent photophysical behavior of these corroles, that is also highly dependent upon substitution.  相似文献   

7.
Three new two-photon absorption chromophores based on a pyrimidine core were synthesized by Aldol condensation in the absence of any organic solvents. Their single-photon spectroscopic characterization as well as their two-photon absorption properties is reported. In addition, strong modulation of single-photon and two-photon fluorescent spectra of these molecules by (de)protonation is also discussed.  相似文献   

8.
Three new iron(III) complexes with the ligand N,N'-bis(2-hydroxybenzyl)-N,N'-bis(pyridin-2-ylmethyl)ethylenediamine, H2bbpen, containing electron-donating and -withdrawing groups (Me, Br, NO2) in the 5-position of the phenol rings were synthesized and fully characterized by IR spectroscopy, ESI mass spectrometry, and CHN elemental analyses. X-ray structures of the iron(III) complexes containing NO2 and Me groups were determined. The effects of the substituents on the electronic properties of the complexes were detected by UV-visible spectroscopy, cyclic voltammetry, and X-ray crystallography. Linear correlations between the Hammett parameter for the substituents (sigma(p)) and the Fe(III)/Fe(II) redox potentials or ligand-metal charge-transfer (LMCT) processes of the complexes were obtained. A theoretical study using DFT is presented and shows good agreement between the experimental and calculated data.  相似文献   

9.
Various electron-donating and -withdrawing groups in aromatic and aliphatic backbones of solvent have been introduced to tailor the electronic structures of single-walled carbon nanotubes (SWCNTs). In the case of solvent with a withdrawing group, electrons were extracted mainly from metallic SWCNTs, whereas small charge transfer was also observed in semiconducting SWCNTs. On the other hand, in the case of solvent with a donating group, electrons were donated to both metallic and semiconducting SWCNTs. This effect was less prominent in solvent with an aliphatic backbone than that with an aromatic backbone. The strong correlation between the sheet resistance and electronic structures of nanotubes is further discussed in conjunction with a modulation of Schottky barrier height.  相似文献   

10.
We investigate two-photon absorption (2PA) in a series of fluorenyl-based 9,9-diethyl-2-ethynyl-7-((4-R-phenyl)ethynyl)-9,9a-dihydro-4aH-fluorene chromophores with R being various electron donating (ED) and electron withdrawing (EW) groups. We use wavelength-tunable femtosecond laser pulses to measure the 2PA cross sections in the lowest dipole-allowed transition and show that the substituents with stronger ED or EW character enhance the peak 2PA cross section (up to σ(2) ~ 60-80 GM) while the neutral substituents lead to smaller cross sections, σ(2) < 10 GM. We apply two-level approximation to establish a quantitative relation between the 2PA in the pure electronic transition (0-0) and the corresponding change of the permanent electric dipole moment upon the excitation (Δμ). This relation is elucidated by comparing Δμ values obtained from the 2PA measurements with quantum-chemical calculations and with measurements of solvatochromic shifts in a series of solvents. We show that the calculated Δμ correlate well with the values obtained from the 2PA spectroscopy. The Δμ values obtained from the solvatochromic shifts agree well with the above two methods for the chromophores with neutral or weak EW or ED substituents. On the other hand, stronger EW or ED end groups give much larger Stokes shifts, which lead to an overestimation of the Δμ values. We tentatively attribute this effect to the excitation-induced electronic density change occurring predominantly at the substituent side of the molecule, which causes the effective point dipole associated with the Δμ to interact more strongly with the surrounding solvent.  相似文献   

11.
《中国化学快报》2023,34(4):107674
Based on the coumarin skeleton, we deliberately designed two groups of fluorophores, termed as Coum-R and Naph-Coum-R, using the diphenylamino group as the electron donor, which displayed long-wavelength emissions (red spectral region), large Stokes shift (up to 204 nm), superior AIE performance, and large two-photon absorbance cross-sections (as high as 365 GM). The electron-withdrawing substituents at the 3-position of these dyes could induce a significant red-shift in their emission spectra. Preliminary imaging experiments demonstrated the capability of these dyes as two-photon fluorophores for specifically staining lipid droplets in living cells.  相似文献   

12.
Novel alkene and alkyne branched structures have been synthesized, and their two-photon absorption (2PA) properties are reported. This series of alkene and alkyne trimer systems tests the mechanistic approach for enhancing the 2PA process which is usually dictated by the pi-bridging, delocalization length, and corresponding charge transfer on the 2PA cross sections. The results suggest that alkene branched systems have higher 2PA cross sections. While steady-state absorption and emission measurements were not successful in predicting the observed trend of 2PA cross sections, time-resolved measurements have explained the trends observed. It was found that, upon photoexcitation, there is an ultrafast charge localization to an intramolecular charge-transfer (ICT) state, followed by the presence of a solvent and conformationally relaxed ICT state in these branched systems.  相似文献   

13.
We report a comprehensive time-dependent density functional theory (TDDFT) study of one-photon and two-photon absorption (OPA and TPA, respectively) spectra for donor-pi-acceptor molecules. The calculated excitation energies were generally shown to be in good agreement with experiment, particularly when compared to results from measurements carried out in a nonpolar solvent, although the oscillator strengths were overestimated in some cases. Calculated TPA cross sections applying the two-state approximation were shown to be highly dependent on the form of the line-shape function used. Although a good agreement with experimental TPA spectra was generally observed, the wide range in the experimentally measured values and lack of systematic experimental data on solvent effects limited a detailed comparison as yet.  相似文献   

14.
A series of luminescent platinum(II) terpyridyl acetylide complexes, ([Pt(tpy)(CCPh)]ClO4 (1) and [Pt(ttpy)(CC-p-C6H4R)]ClO4, where tpy=terpyridine, ttpy=4'-p-tolylterpyridine, R=H, Cl, Me) (2-4) were studied with regard to excited-state quenching by dialkylated bipyridinium cations as electron acceptors and triethanolamine (TEOA) as an electron donor and the photogeneration of hydrogen from systems containing the chromophore, the dialkylated bipyridinium cations, TEOA, and colloidal Pt as a catalyst. The dialkylated bipyridinium cations include methyl viologen (MV2+) and a series of diquats prepared from 2,2'-bipyridine or 4,4'-dimethyl-2,2'-bipyridine. The quenching rates for the diquats for one of the chromophores (2) are close to the diffusion-controlled limit. The most effective electron acceptor and relay for hydrogen evolution has been found to be 4,4'-dimethyl-1,1'-trimethylene-2,2'-bipyridinium (DQ4) which on photoreduction by the chromohore provides the strongest reducing agent of the diquats studied. The rate of hydrogen evolution depends in a complex way on the concentration of the bipyridinium electron relay, increasing with concentration at low concentrations and then decreasing at high concentrations. The rate of H2 photogeneration also increases with TEOA concentration at low values and eventually reaches a plateau. The most effective system examined to date consists of the chromophore 2 (2.2x10(-5) M), DQ4 (3.1x10(-4) M), TEOA (2.7x10(-2) M), and Pt colloid (6.0x10(-5) M), and has produced 800 turnovers of H2 (67% yield based on TEOA as sacrificial electron donor) after 20 h of photolysis with lambda>410 nm.  相似文献   

15.
A comprehensive photophysical study of the linear and nonlinear absorption properties has been carried out on two series of two-photon absorbing dyes to gain insight into how structure-property relationships influence observed nonlinear absorption. The materials studied consist of an electron accepting benzothiazole group connected to an electron donating diphenylamine via a fluorene bridging group. Two series differ from each other by the addition of one phenyl group and for each series one-arm (dipolar, AF240 and AF270), two-arm (quadrupolar, AF287 and AF295), and three-arm (octupolar, AF350 and AF380) versions were studied. Overall the AF240 series exhibits higher intrinsic two-photon absorption (TPA) cross-sections than the AF270 series as well as enhanced nanosecond nonlinear absorption, with an increase with number of branches. The enhanced nanosecond nonlinearity is understood by taking into account the contribution from the singlet and triplet excited states and was verified by a two-photon assisted excited-state absorption model that satisfactorily predicts the nonlinear absorption of the chromophores.  相似文献   

16.
We provide here a structural impact on two-photon absorption cross-section (σTPA) for 22 distinct fluorescent protein (FP) chromophores. By employing time-dependent density functional theory, we gain insight into two-photon absorption (TPA) process by investigating relationship between σTPA and one-photon electronic transition dipole moment and permanent dipole moment change (Δμ) upon transition. Our results reveal that for the S1 excited state, σTPA is proportional to (Δμ)2 in agreement with two-state model of TPA process. On the contrary, the TPA spectroscopy of higher excited states (S n, n > 1) is much more complex. We do not find a main driving force of large σTPA that would be common for investigated chromophores. Instead, it seems that channel interference between one-photon transition dipole moment vectors is responsible for enhancement or diminishment of σTPA. Our in vacuo results may serve as a benchmark to investigate a role of chromophore-protein interaction in shaping TPA spectra of FPs.  相似文献   

17.
18.
A((=))-D, [A((=))](2)-D and [A ((=))](3)-D multi-maleimides and multi-itaconimides bearing electron-donating chromophores display a strong fluorescence quenching due to an intramolecular charge-transfer interaction. The electron-accepting C=C bond plays a key role in the intramolecular quenching. For the isomerization of these multi-itaconimides and Michael additions of these multi-maleimides, their emission behavior is irreversible. For the Diels-Alder additions of these multi-maleimides, their emission behavior is reversible due to the reversible opening and closing of intramolecular charge-transfer pathway. Tris-maleimide TMPA peripherally modified with furfural alcohol displays not only reversible fluorescence behavior but also reversible aggregation behavior.  相似文献   

19.
A ring-substituted toluene with an electron-withdrawing substituent, p-tolunitrile, is oxygenated by molecular oxygen to yield the corresponding aldehyde with tetrafluoro-p-dicyanobenzene as a photocatalyst under photoirradiation with an Hg lamp (lambda > 300 nm). The oxygenation of a ring-substituted toluene with an electron-donating substituent, p-xylene, by molecular oxygen is also achieved with 10-methyl-9-phenylacridinium ion as a photocatalyst under visible light irradiation, yielding p-tolualdehyde exclusively as the final oxygenated product. Both the oxygenation reactions are initiated by photoinduced electron transfer from the ring-substituted toluene to the singlet excited state of the photocatalyst. The reason for the high selectivity in the photocatalytic oxygenation of various toluene derivatives by molecular oxygen is discussed on the basis of the photoinduced electron transfer mechanism that does not involve the autoxidation process (radical chain reactions). The reactive intermediates in the photocatalytic cycle are successfully detected as the transient absorption spectra and the electron spin resonance spectra.  相似文献   

20.
The ion radicals of two series of platinum acetylide oligomers have been subjected to study by electrochemical and pulse radiolysis/transient absorption methods. One series of oligomers, Ptn, has the general structure Ph-C[triple bond]C-[Pt(PBu3)2-C[triple bond]C-(1,4-Ph)-C[triple bond]C-]n-Pt(PBu3)2-C[triple bond]C-Ph (where x=0-4, Ph=phenyl and 1,4-Ph=1,4-phenylene). The second series of oligomers, Pt4Tn, contain a thiophene oligomer core, -C[triple bond]C-(2,5-Th)n-C[triple bond]C- (where n=1-3 and 2,5-Th=2,5-thienylene), capped on both ends with -Pt(PBu3)2-C[triple bond]C-(1,4-Ph)-C[triple bond]C-Pt(PBu3)2-C[triple bond]C-Ph segments. Electrochemical studies reveal that all of the oligomers feature reversible or quasi-reversible one-electron oxidation at potentials less than 1 V versus SCE. These oxidations are assigned to the formation of radical cations on the platinum acetylide chains. For the longer oligomers multiple, reversible one-electron waves are observed at potentials less than 1 V, indicating that multiple positive polarons can be produced on the oligomers. Pulse-radiolysis/transient absorption spectroscopy has been used to study the spectra and dynamics of the cation and anion radical states of the oligomers in dichloroethane and tetrahydrofuran solutions, respectively. All of the ion radicals exhibit two allowed absorption bands: one in the visible region and the second in the near-infrared region. The ion radical spectra shift with oligomer length, suggesting that the polarons are delocalized to some extent on the platinum acetylide chains. Analysis of the electrochemical and pulse radiolysis data combined with the density functional theory calculations on model ion radicals provides insight into the electronic structure of the positive and negative ion radical states of the oligomers. A key conclusion of the work is that the polaron states are concentrated on relatively short oligomer segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号