首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigates flow boiling heat transfer of aqueous alumina nanofluids in single microchannels with particular focuses on the critical heat flux (CHF) and the potential dual roles played by nanoparticles, i.e., (i) modification of the heating surface through particle deposition and (ii) modification of bubble dynamics through particles suspended in the liquid phase. Low concentrations of nanofluids (0.001–0.1 vol.%) are formulated by the two-step method and the average alumina particle size is ~25 nm. Two sets of experiments are performed: (a) flow boiling of formed nanofluids in single microchannels where the effect of heating surface modification by nanoparticle deposition is apparent and (b) bubble formation in a quiescent pool of alumina nanofluids under adiabatic conditions where the role of suspended nanoparticles in the liquid phase is revealed. The flow boiling experiments reveal a modest increase in CHF by nanofluids, being higher at higher nanoparticle concentrations and higher inlet subcoolings. The bubble formation experiments show that suspended nanoparticles in the liquid phase alone can significantly affect bubble dynamics. Further discussion reveals that both roles are likely co-existent in a typical boiling system. Properly surface-promoted nanoparticles could minimize particle deposition hence little modification of the heating surface, but could still contribute to the modification in heat transfer through the second mechanism, which is potentially promising for microchannel applications.  相似文献   

2.
The spontaneous formation of dendritic aggregates is observed in a two-dimensional confined layered system consisting of a film composed of liquid crystal, dye and solvent cast above a polymer substrate. The observed aggregates are promoted by phase separation processes induced by dye diffusion and solvent evaporation. The growth properties of the aggregates are studied through the temporal evolution of their topological properties (surface, perimeter, fractal dimension). The fractal dimension of the completely formed structures, when they are coexistent with different types of structures, is consistent with theoretical and experimental values obtained for Diffusion-Limited Aggregates. Under different experimental conditions (temperature and local dye concentration) the structure forms without interactions with other kinds of structures, and its equilibrium fractal dimension is smaller. The fractal dimension is thus not a universal property of the observed structures, but rather depends on the experimental conditions.  相似文献   

3.
The growth of antimony aggregates on the basal plane of graphite via diffusion and aggregation of Sb4 clusters has been investigated with scanning electron microscopy, and in 3-dimensions with atomic force microscopy. The aggregate morphologies depend critically on the deposition conditions. It is shown that a transition from compact to branched morphologies with increasing aggregate size, depends on the particle flux. Also, the aggregate heights are strongly influenced by flux, with higher fluxes producing flatter aggregates. The heights of individual island branches are also shown to depend on the local diffusion field.  相似文献   

4.
Production and handling of manufactured nanoparticles (MNP) may result in unwanted worker exposure. The size distribution and structure of MNP in the breathing zone of workers will differ from the primary MNP produced. Homogeneous coagulation, scavenging by background aerosols, and surface deposition losses are determinants of this change during transport from source to the breathing zone, and to a degree depending on the relative time scale of these processes. Modeling and experimental studies suggest that in MNP production scenarios, workers are most likely exposed to MNP agglomerates or MNP attached to other particles. Surfaces can become contaminated by MNP, which constitute potential secondary sources of airborne MNP-containing particles. Dustiness testing can provide insight into the state of agglomeration of particles released during handling of bulk MNP powder. Test results, supported by field data, suggest that the particles released from powder handling occur in distinct size modes and that the smallest mode can be expected to have a geometric mean diameter >100 nm. The dominating presence of MNP agglomerates or MNP attached to background particles in the air during production and use of MNP implies that size alone cannot, in general, be used to demonstrate presence or absence of MNP in the breathing zone of workers. The entire respirable size fraction should be assessed for risk from inhalation exposure to MNP.  相似文献   

5.
郭浩  丁丽  莫育俊 《光散射学报》2011,23(2):120-124
采用激光刻蚀法在水溶液中制备了氧化铜纳米粒子,刻蚀完成后将氧化铜胶体沉积在铝片上形成一层氧化铜岛膜.所得纳米粒子的紫外—可见吸收峰在280 nm处,表明所得为氧化铜.原子力显微镜观察表明所制得的纳米粒子具有椭圆状结构,长轴约为30~50 nm,厚度约为8 nm.扫描电镜图片显示氧化铜粒子沉积在铝基底后形成了大小在0.5...  相似文献   

6.
Optimal deposition procedures are determined for nanoparticle size characterization by atomic force microscopy (AFM). Accurate nanoparticle size distribution analysis with AFM requires non-agglomerated nanoparticles on a flat substrate. The deposition of polystyrene (100 nm), silica (300 and 100 nm), gold (100 nm), and CdSe quantum dot (2–5 nm) nanoparticles by spin coating was optimized for size distribution measurements by AFM. Factors influencing deposition include spin speed, concentration, solvent, and pH. A comparison using spin coating, static evaporation, and a new fluid cell deposition method for depositing nanoparticles is also made. The fluid cell allows for a more uniform and higher density deposition of nanoparticles on a substrate at laminar flow rates, making nanoparticle size analysis via AFM more efficient and also offers the potential for nanoparticle analysis in liquid environments.  相似文献   

7.
In the synthesis of nanostructured thin films the characterization of the growth processes plays a fundamental role for the control of the film and surface properties. Moreover when the deposition technique is based on the production and the assembling of nanoparticles/clusters the characterization of the precursor size distribution is of fundamental importance.We have designed a pulsed laser deposition (PLD) apparatus for the production of nanostructured thin films and surfaces, connected to a UHV variable temperature scanning tunneling microscope (STM). The whole system is devoted to the synthesis and in situ study of nanostructured and nanoporous functional metal and metal oxide films and surfaces. We have deposited W nanoparticles produced by a few hundreds laser pulses in order to investigate the initial mechanisms of the film growth. Different deposition conditions have been explored by controlling the laser generated plasma expansion through a background gas in the PLD chamber. STM measurements have been performed on W thin films deposited on different substrates to study both the size distribution and the aggregation of the precursors on the surface. Although substrate effects must be taken into account, the control of the background gas pressure and of the target-to-substrate distance allows to produce surfaces with different morphologies. This opens the possibility to tailor the material properties through the control of the size and deposition energy of the building nano-units.  相似文献   

8.
We report the formation of gold ramified aggregates after deposition of Au on an ionic liquid surface by thermal evaporation method at room temperature.It is observed that the aggregates are composed of both granules and nanocrystals with hexagonal or triangular appearances.The most probable size of the nanocrystals is much larger than that of the granules and it increases with the nominal deposition thickness.The formation mechanism of the granules,nanocrystals and aggregates is presented.  相似文献   

9.
Tin oxide(SnO_2) is one of the most promising transparent conducting oxide materials,which is widely used in thin film gas sensors.We investigate the dependence of the deposition time on structural,morphological and hydrogen gas sensing properties of SnO_2 thin films synthesized by dc magnetron sputtering.The deposited samples are characterized by XRD,SEM,AFM,surface area measurements and surface profiler.Also the H_2 gas sensing properties of SnO_2 deposited samples are performed against a wide range of operating temperature.The XRD analysis demonstrates that the degree of crystallinity of the deposited SnO_2 films strongly depends on the deposition time.SEM and AFM analyses reveal that the size of nanoparticles or agglomerates,and both average and rms surface roughness is enhanced with the increasing deposition time.Also gas sensors based on these SnO_2 nanolayers show an acceptable response to hydrogen at various operating temperatures.  相似文献   

10.
The combustion of premixed gas mixtures containing micro droplets of water was studied using one-dimensional approximation. The dependencies of the burning velocity and flammability limits on the initial conditions and on the properties of liquid droplets were analyzed. Effects of droplet size and concentration of added liquid were studied. It was demonstrated that the droplets with smaller diameters are more effective in reducing the flame velocity. For droplets vaporizing in the reaction zone, the burning velocity is independent of droplet size, and it depends only on the concentration of added liquid. With further increase of the droplet diameter the droplets are passing through the reaction zone with completion of vaporization in the combustion products. It was demonstrated that for droplets above a certain size there are two stable stationary modes of flame propagation with transition of hysteresis type. The critical conditions of the transition are due to the appearance of the temperature maximum at the flame front and the temperature gradient with heat losses from the reaction zone to the products, as a result of droplet vaporization passing through the reaction zone. The critical conditions are similar to the critical conditions of the classical flammability limits of flame with the thermal mechanism of flame propagation. The maximum decrease in the burning velocity and decrease in the combustion temperature at the critical turning point corresponds to predictions of the classical theories of flammability limits of Zel'dovich and Spalding. The stability analysis of stationary modes of flame propagation in the presence of water mist showed the lack of oscillatory processes in the frames of the assumed model.  相似文献   

11.
磁共振热疗(magnetic resonance hyperthermia)是近年来新兴的一种纳米医学治疗方法,由磁共振的硬件架构产生特定交变磁场,有效地加热磁性纳米粒子,以直接或间接地杀死癌细胞,体现诊疗一体化。提高磁性纳米粒子的加热效率是当前磁共振热疗领域亟待解决的难题之一。磁性纳米粒子的加热效率不仅与粒子本身的大小、性质以及尺寸分布有关,还和聚集状态有关。该研究利用3D Metropolis蒙特卡罗模拟方法,模拟了不同温度下磁性纳米粒子的磁共振热动力学行为及其团聚与分离现象;并通过修正过的郎之万方程,建立了相变临界温度与外加磁场频率的函数关系。模拟结果显示,磁性纳米粒子悬浮液中多聚体的相对含量随着温度的升高而降低,达到临界温度后,多聚体完全分离成单体;而提高交变磁场频率可以显著降低临界温度,且存在临界频率,高于此临界频率后临界温度不再受外加磁场频率影响,达到稳定。因而在临界频率下预热磁性纳米粒子悬浮液,使得多聚体分离成单体,可优化磁性纳米粒子的热疗效率。  相似文献   

12.
Using transmission electron microscopy, the size‐dependent room temperature oxidation of tin nanoparticles is studied. The oxide that forms during room temperature oxidation of Sn particles is amorphous SnO, and it retains this stoichiometry and structure over extended time periods. From the investigation of arrays of Sn nanoparticles with broad size distribution, under identical conditions, the Sn oxide thickness is evaluated as a function of size and oxidation time. The oxide thickness depends strongly on the size of the Sn nanoparticles, which is in excellent agreement with predictions for a Mott–Cabrera model corrected for a non‐uniform electric field. The results demonstrate the accelerated oxidation kinetics of nanoscale particles with high curvature, due to the amplified electric field at the interface to a continuously shrinking metal core.  相似文献   

13.
The possibility to produce silicon nanoparticles by the method of the pulse laser ablation of monocrystaline silicon targets in the water, glycerol and liquid nitrogen have been shown. Studies by the atomic-force microscopy and Raman scattering methods revealed the nanoparticles have a crystalline structure and their mean size depends on the buffer liquid composition.  相似文献   

14.
The dynamics of single-domain magnetic nanoparticles cross-linked into multiparticle aggregates by organic ligands is considered. Mechanical factors of the effect of low frequency magnetic field on macromolecules attached to magnetic nanoparticles/aggregates within a suspension or gel are analyzed. The optimum conditions ensuring the best control over biochemical reactions in suspension by an external magnetic field (i.e., the ranges of frequency and magnetic field intensities, and the size of magnetic nanoparticles and shells covering them) are determined.  相似文献   

15.
InSb nanostructures have been synthesized by the use of gas aggregation process. Nanoparticles with different shapes are obtained by controlling the growth and deposition temperature of the InSb nanoclusters. Triangular nanocrystals are commonly observed when the clusters are extracted from the condensation chamber of the source and deposited on the room temperature substrate at high vacuum. When the deposition is performed inside the condensation chamber at high temperature near the melting point of bulk InSb, nanoparticles formed on the substrate surface show several kinds of 3-dimensional morphologies, such as triangular or rectangular prisms, as well as hexagonal tablets. Keeping the same conditions for the cluster source operation and deposition, after long time growth, nanorods with hexagonal and quadrangular cross sections are formed through vapor-liquid-solid (VLS) process. The origin of the difference on the morphologies and shapes of the nanostructures is attributed to the anisotropic growth of InSb, which is temperature dependent.  相似文献   

16.
Ag and Au nanoparticles are obtained by magnetron sputtering and pulsed laser deposition under different conditions, and the features of their absorption spectra associated with plasmon resonances are investigated. Optimal deposition conditions for obtaining small (5?C10 nm) silver nanoparticles with a high density of surface distribution include an increased argon pressure (2.5 × 10?2 Torr) and a low discharge voltage (100 V). Gold nanoparticle arrays obtained by pulsed laser deposition at a temperature of 200°C in vacuum are more uniformly distributed on the substrates than those deposited at room temperature in argon. It is shown that the maximum of the plasmon absorption shifts toward shorter wavelengths with a decrease in the equivalent thickness of metal films and depends not only on this thickness but also on the type of substrate, which is responsible for the morphology of nanoparticle arrays.  相似文献   

17.
We report a catalyst-free growth of Cu nanocrystals on ionic liquid surfaces by thermal evaporation method at room temperature. After deposition of Cu on ionic liquid surfaces, ramified Cu aggregates form. It is found that the aggregates are composed of both granules and nanocrystals with triangular or hexagonal appearances. The sizes of the nanocrystals are in the range of tens to hundreds of nanometers and increase with the nominal deposition thickness. The growth mechanism of the Cu aggregates and nanocrystals is presented.  相似文献   

18.
1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) phospholipid membrane was used to fabricate a tightly packed 2-dimensional array of Sn nanoparticles through direct deposition of Sn on the DOPC membrane. Major advantage of the proposed method was that the vertical ordering of the nanoparticles extended to a centimeter (2 cm × 2 cm substrate) scale in the as-prepared state. It was also shown that the particle size and morphology were altered depending on processing conditions. Experimental evidences indicated that the Sn nanoparticle surface, which spontaneously oxidized during deposition, was encapsulated by the DOPC molecules. After removing the encapsulating lipid layer, the oxide-covered Sn nanoparticles exhibited strong photoluminescence. It was also demonstrated that the Sn particle morphology and ordering are related to the lipid membrane structure and chemistry. The proposed method can be easily extended to other metals that are susceptible to oxidation to produce various metal oxide nanoparticles.  相似文献   

19.
《Physics letters. A》2014,378(26-27):1845-1849
The viscosity of nanofluids as a function of nanoparticle size and material is modeled and analyzed. Dependences of the viscosity of nanofluids based on liquid argon with aluminum and lithium nanoparticles are obtained. The nanoparticle size ranges from 1 to 4 nm. The volume concentration of nanoparticles is varied from 1% to 12%. It is shown that the viscosity of the nanofluid increases with decreasing nanoparticle size and, in addition, depends on the nanoparticle material.  相似文献   

20.
This study is a compilation of results obtained during the cleanout of deposition equipment such as chemical vapor deposition or physical vapor deposition The measurement campaigns aimed to evaluate the potential exposure to nanoaerosols in the occupational environment and were conducted in the workspace. The characterization of aerosols includes measurements of the concentration using condensation particle counters and measurements of the size distribution using fast mobility particle sizer, scanning mobility particle sizer, and electrical low pressure impactor (ELPI). Particles were sampled using collection membranes placed on the ELPIs stages. The samples were analyzed with an SEM?CEDS to provide information including size, shape, agglomeration state, and the chemical composition of the particles. The majority of the time, no emission of nanoparticles (NPs) was measured during the use of the molecular deposition equipment or when opening the chambers, mainly due to the enclosed processes. On the other hand, the maintenance of the equipment, and especially the cleanout step, could induce high concentrations of NPs in the workplace following certain processes. Values of around 1 million particles/cm3 were detected with a size distribution including a high concentration of particles around 10?nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号