首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The radical-molecule reaction of C2Cl3 with NO2 is explored at the B3LYP/6-311G(d,p) and CCSD(T)/6-311+G(d,p) (single-point) levels. On the singlet potential energy surface (PES), the association between C2Cl3 and NO2 is found to be carbon-to-nitrogen attack forming the adduct C2Cl3NO2 (1) without any encounter barrier, followed by isomerization to C2Cl3ONO (2). Starting from 2, the most feasible pathway is the N–O1 bond cleavage which lead to P 1 (C2Cl3O + NO). Much less competitively, 2 transforms to the three-membered ring isomer c-OCCl2C–ClNO (4 a ) which can easily interconvert to c-OCCl2C–ClNO 4 b . Then 4 (4 a , 4 b ) takes direct C1–C2 and C2–O1 bonds cleavage to give P 2 (COCl2 + ClCNO). The lesser competitive channel is the 4 a isomerizes to the four-membered ring intermediate O-c-CNClOCCl2 (5) followed by dissociation to P3 (CO + ClNOCCl2). The concerted 1,2-Cl shift along with C1–O1 bond rupture of 4 b to form ONC(O)CCl3 (6) followed by dissociation to P 4 (ClNO + OCCCl2) is even much less feasible. Moreover, some of P 3 and P 4 can further dissociate to P 5 (ClNO + CO + CCl2). Compared with the singlet pathways, the triplet pathways may have less contribution to the title reaction. Our results are in marked difference from previous theoretical studies which showed that two initial adducts C2Cl3–NO2 and C2Cl3–ONO are obtained. Moreover, in the present paper we focus our main attentions on the cyclic isomers in view of only the chain-like isomers are considered by previous studies. The present study may be helpful for understanding the halogenated vinyl chemistry.  相似文献   

2.
The mechanisms of CH2SH with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PES) at the BMC-CCSD//B3LYP/6-311 + G(d,p) level. The result shows that the title reaction is more favourable on the singlet PES thermodynamically, and it is less competitive on the triplet PES. On the singlet PES, the initial addition of CH2SH with NO2 leads to HSCH2NO2 (IM2) without any transition state, followed by a concerted step involving C–N fission and shift of H atom from S to O giving out CH2S + trans-HONO, which is the major products of the title reaction. With higher barrier height, the minor products are CH2S + HNO2, formed by a similar concerted step from the initial adduct HSCH2ONO (IM1). The direct abstraction route of H atom in SH group abstracted by O atom might be of some importance. It starts from the addition of the reactants to form a weak interaction molecular complex (MC3), subsequently, surmounts a low barrier height leading to another complex (MC2), which gives out CH2S + trans-HONO finally. Other direct hydrogen abstraction channels could be negligible with higher barrier heights and less stable products.  相似文献   

3.
The reaction of an α-haloketone with a nucleophile has three reaction channels: carbonyl addition, direct substitution, and proton abstraction. DFT calculations for the reaction of PhCOCH(2)Br with OH(-) showed that there exists an addition/substitution TS on the potential energy surface, in which OH(-) interacts with both the α- and carbonyl carbons. The intrinsic reaction coordinate calculations revealed that the TS serves as the TS for direct substitution for XC(6)H(4)COCH(2)Br with an electron-donating X or a X less electron-withdrawing than m-Cl, whereas the TS serves as the TS for carbonyl addition for derivatives with a X more electron-withdrawing than m-CF(3). Trajectory calculations starting at respective TS indicated that the single TS can serve for the two mechanisms, substitution and addition, through path bifurcation after the TS for borderline substrates. The reaction is the first example of dynamic path bifurcation for fundamental reaction types of carbonyl addition and substitution.  相似文献   

4.
The hydrogen transfer reaction in the reaction of HOSO + NO2 with and without H2O have been investigated using multicomponent quantum-mechanics method, which can directly take nuclear quantum effect (NQE) of light nuclei into account. For the case of the reaction without H2O, our calculation reveals that the reaction leading to trans-HONO is preferred. For the reaction with H2O, water-non-mediated and water-mediated (hydrogen-relay) hydrogen transfer mechanism are investigated. The NQE of hydrogen nucleus lowers the relative energy of the stationary point structures and reduces the activation barrier of the reactions. The largest stabilization is found in the transition state structure of the hydrogen-relay type reaction. H/D isotope effects for the reactions are also analyzed. In particular, H/D isotope effect on the activation barrier is analyzed in detail with the aid of the active strain model.  相似文献   

5.
Alkoxy radicals RO? form an important class of hydrocarbon oxidation intermediates in combustion processes, interstellar and atmospheric chemistry[1—8]. The number of NO to NO2 conversions can take place during the oxidation of the parent hydrocarbon in the atmosphere and hence affecting tropospheric ozone production. The experimental and theoretical investi-gations of the reactions of alkoxy radicals will be ad-vantageous for safeguarding the environment. Despite the importance of alkoxy r…  相似文献   

6.
The reaction of NO(2) with Fe(2)O(3) has relevance for both atmospheric chemistry and catalysis. Most studies have focused on hematite, α-Fe(2)O(3), as it is the thermodynamic stable state of iron oxide; however, other forms of Fe(2)O(3) naturally occur and may have different chemistries. In this study, we have investigated the reaction products and kinetics for NO(2) reacting with γ-Fe(2)O(3) powder using diffuse reflectance infrared Fourier transform spectroscopy and compared the results to those of previous studies of NO(2) reacting with α-Fe(2)O(3). Both α- and γ-Fe(2)O(3) produce surface-bound nitrate at the pressures examined in this study (24-212 mTorr); surface-bound nitrite products are observed at all pressures for γ-Fe(2)O(3) whereas nitrite was only observed on α-Fe(2)O(3) at lower pressures. Surface-bound NO(+) and Fe-NO products are observed on γ-Fe(2)O(3), which have not been observed with α-Fe(2)O(3). The reaction kinetics show a first-order dependence on NO(2) pressure and this is used to support the hypothesis of unimolecular reaction of adsorbed NO(2) with the γ-Fe(2)O(3) surface as the slow step in the reaction mechanism. The difference in product formation between NO(2) reacting with γ-Fe(2)O(3) and previous studies of α-Fe(2)O(3) illustrate the fact that care must be taken in generalizing reactivity of different polymorphs.  相似文献   

7.
In this work, quantum chemistry and kinetics calculations have been performed on the retro-cheletropic ene reactions of N-phenyl-1-methyl-6-methylenecyclohexa-2,4-dienylmethanimine (R1) and N-phenyl-2,2-dimethylbut-3-en (R2). Two major possible mechanisms have been considered and rate constants have been calculated using the transition state theory. The simple Wigner, Eckart zero-curvature tunneling and small-curvature tunneling (SCT) methods were evaluated. The best agreement with experimental rate coefficients was found when SCT correction was applied. A mean deviation of a factor 3 on the rate coefficients is found for the studied reactions at the temperatures of 417 and 773 K. Calculated rate coefficients showed that the tunneling corrections played a critical role in obtaining accurate rate coefficients, especially at lower temperature (417 K). Calculated rate coefficients are in good agreement with the reported experimental data and similar compounds in the case of R1 and R2, respectively. These results support the concerted and stepwise paths for the gas phase reactions of R1 and R2, respectively. Computed kinetic parameters confirmed that R1 had greater reactivity than R2. This trend explains the effects of an extra phenyl-like system on the stability of the transition state and hence increases the R1 rate constant. Calculated rate constants especially at the M06 level are in better agreement with the experimental values than the B3LYP ones. Natural bond orbital (NBO) studies of the reactants and their transition states reveal that their electron delocalization change is an important factor in the determination of the reactivity order for these compounds. Finally, the nature of bond making and breaking during the reactions has been investigated using the concepts of electron charge density and Laplacian in atom in the molecule method.  相似文献   

8.
The recombination of S atoms has been found to be stepwise from the smallest unit, the elemental S atom, to the most abundant molecule S(8). The reaction between S + S(2) → S(3) has not been reported either experimentally or by theory, but may be a key intermediate step in the formation of sulfur aerosols in low-O(2) atmospheres. In this work, the kinetics of this reaction is reported with Ar gas used as the chaperone molecule in the production of S(3) via two complex intermediates: SAr + S(2) and S(2)Ar + S. Quasi-classical and classical trajectory methods are used. The rate constant of the S + S(2) + Ar → S(3) + Ar reaction is determined to be 2.66 × 10(-33) cm(6) mol(-1)?s(-1) at 298.15 K. The temperature dependence of the reaction is found to be 2.67 × 10(-33) exp[143.56(1∕T-1∕298.15)]. The second-order rate constant of S + S(2) → S(3) is 6.47 × 10(-14) cm(3)?molecule(-1)?s(-1) at 298.15 K and the Arrhenius-type rate constant is calculated to be 6.25 × 10(-14) exp[450.15(1∕T-1∕298.15)] cm(3)?molecule(-1)?s(-1). This work provides a rate coefficient for a key intermediate species in studies of sulfur formation in the modern Venus atmosphere and the primitive Earth atmosphere, for which assumed model rate coefficients have spanned nearly 4 orders of magnitude. Although a symmetry-induced mass-independent isotope effect is not expected for a chaperone mechanism, the present work is an important step toward evaluating whether mass-independence is expected for thiozone formation as is observed for ozone formation.  相似文献   

9.
The mechanisms of CH2I with NO2 reaction were investigated on the singlet and triplet potential energy surfaces (PESs) by the UB3LYP method. The energetic information is further refined at the UCCSD(T) and UQCISD(T) levels of theory. Our results indicated that the title reaction is more favorable on the singlet PES thermodynamically, and less competitive on the triplet one. On the singlet PES, the title reaction is most likely to be initiated by the carbon-to-oxygen approach forming the adduct IM1 (H2ICONO-trans) without any transition state, which can isomerizes to IM2 (H2ICNO2) and IM3 (H2ICONO-cis), respectively. The most feasible pathway is the 1, 3-I shift with C–I and O–N bonds cleavage along with the N–I bond formation of IM1 lead to the product P1 (CH2O + INO), which can further dissociate to give P3 (CH2O + I + NO). The competitive pathway is 1, 3-H shift associated with O–N bond rupture of IM1 to form P2 (CHIO + HNO). The theoretically obtained major product CH2O and adducts IM1 and IM2 are in good agreement with the kinetic detection in experiment. The similarities and discrepancies between CH2I + NO2 and CH2Br + NO2 reactions are discussed in terms of the electronegativity of halogen atom and the barrier height of the rate-determining process. The present study may be helpful for further experimental investigation of the title reaction.  相似文献   

10.
Thermite reactions between aluminum and metal oxides could lead to the formation of intermetallic matrix composites used in high-temperature industrial applications. Thermite reaction in Al–TiO2 system needs a considerable amount of energy to take place by mechanochemical or by the combustion synthesis (CS) method due to the low amount of reaction enthalpy in Al–TiO2 system. In this study, Fe2O3 was chosen as a accelerator for this system, to generate a high amount of heat which could be released between Fe2O3 and Al, leading to a more convenient reaction between Al and TiO2 in the CS process. The results of XRD, SEM, and DSC analyses indicated that both the mechanical activation of Al–TiO2 system in a high-energy ball mill and the Fe2O3 addition led to considerable effects of reduction in the reaction temperature and increase in the reaction intensity in Al–TiO2 nanothermite system. Finally, it was shown that Fe3Al intermetallic compounds as well as γ-AlTi and alumina phases in the final products were formed after the CS of the milled powders.  相似文献   

11.
Ab initio UMP2 and UQCISD(T) calculations, with 6-311G** basis sets, were performed for the titled reactions. The results show that the reactions have two product channels: NH2+ HNCO→NH3+NCO (1) and NH2+HNCO-N2H3+CO (2), where reaction (1) is a hydrogen abstraction reaction via an H-bonded complex (HBC), lowering the energy by 32.48 kJ/mol relative to reactants. The calculated QCISD(T)//MP2(full) energy barrier is 29.04 kJ/mol, which is in excellent accordance with the experimental value of 29.09 kJ/mol. In the range of reaction temperature 2300-2700 K, transition theory rate constant for reaction (1) is 1.68 × 1011- 3.29 × 1011 mL · mol-1· s-1, which is close to the experimental one of 5.0 ×1011 mL× mol-1· s-1 or less. However, reaction (2) is a stepwise reaction proceeding via two orientation modes, cis and trans, and the energy barriers for the rate-control step at our best calculations are 92.79 kJ/mol (for cis-mode) and 147.43 kJ/mol (for trans-mode), respectively, which is much higher than  相似文献   

12.
The reaction mechanism and kinetics for the abstraction of hydrogen and addition of hydroxyl radical (OH) to 2′-deoxycytidine have been studied using density functional theory at MX06-2X/6-311+G(d,p) level in aqueous solution. The optimized geometries, energies, and thermodynamic properties of all stationary points along the hydrogen abstraction reaction and the addition reaction pathways are calculated. The single-point energy calculations of the main pathways at CCSD(T)/6-31+G(d,p)//MX06-2X/6-311+G(d,p) level are performed. The rate constants and the branching ratios of different channels are evaluated using the canonical variational transition (CVT) state theory with small-curvature tunneling (SCT) correction in aqueous solution to simulate the biological system. The branching ratios of hydrogen abstraction from the C1′ site and the C5′ site and OH radical addition to the C5 site and the C6 site are 57.27% and 12.26% and 23.85% and 5.69%, respectively. The overall calculated rate constant is 4.47?×?109 dm3 mol?1 s?1 at 298 K which is in good agreement with experiments. The study could help better understand reactive oxygen species causing DNA oxidative damage.  相似文献   

13.
A detailed quantum chemical study is performed on the mechanism of ClOO + NO reaction at the B3LYP/6-311+G (2d) level of theory combined with CCSD (T) single point energy calculation. The possible product channels for the reaction are obtained and discussed on the basis of the singlet [ClNO3] potential energy surface. The calculation indicates that the dominant product for the title reaction is ClO + NO2 by the direct dissociation of the initial adduct, and the formation of the other products is much less likely since they are unfavorable kinetically. A comparison is also made between the title reaction and the analogous reaction of FO2 + NO to gain a deeper insight into the mechanism of the XO2 + NO reactions.  相似文献   

14.
A detailed theoretical study of the potential energy surface of poorly understood ion-molecule reaction of NH(2)(-) and O(2) (a(1)Δ(g)) is explored at the density functional theory B3LYP/6-311++G(d,p), ab initio of QCISD/6-311++G(d,p) and CCSD(T)/6-311++G(3df, 2pd) (single-point) theoretical levels for the first time. It is shown that there are six total possible products from P(1) to P(6) on the singlet potential energy surface. Among these, the charge-transfer product P(1) (NH(2) + O(2)(-)) is the most favorable product with predominant abundances, whereas P(4) (NO(-) + H(2)O) and P(2) (HNO + OH(-)) may be the second and third feasible products followed by the almost neglectable P(3) (NO(2)(-) + H(2)), while P(5) (c-NO(2)(-) + H(2)) and P(6) (ONO(-) + H(2)) will not be observed due to their either high barriers or being secondary products. The present theoretical study points out that besides P(1) (NH(2) + O(2)(-)) and P(2) (HNO + OH(-)), P(4) (NO(-) + H(2)O) should be also observed, which is different from the previous experiment study by Anthony Midey et al. in 2008. In addition, almost all of the reaction pathways to products are exothermic and the reaction rate should be very fast since the reaction barriers are very low except for P(5) (c-NO(2)(-) + H(2)) which is in agreement with the measured total reaction rate constant k = 9.0 × 10(-10) cm(3)s(-1) at 300 K in the experiment study. It is expected that the present theoretical study may be helpful for the understanding of the reaction mechanism related to NHX(-), NX(2)(-), PHX(-), and PX(2)(-) (X = H, F, and Cl).  相似文献   

15.
Research on Chemical Intermediates - Different radical forms of oxygen (O?, O 2 ? and O 3 ? ) on the surface of nanocrystalline MgO are well known. It was earlier demonstrated...  相似文献   

16.
The reaction of Os~+(~6D,~4F) with N_2O has been investigated at B3LYP/TZVP and CCSD(T)/6-311+G~* levels of theory.The mechanisms corresponding to O-atom and N-atom transfer reactions have been revealed.It was found that on the sextet reaction surface both the O-atom and N-atom transfer reactions undergo through direct-abstraction mechanism,leading to the formation of OsO~+ and OsN~+,whereas on quartet surface the two reactions undergo through O-N bond or N-N bond insertion mechanism.The calculated energ...  相似文献   

17.
A computational study of the reaction of P(+)((3)P) with acetylene has been carried out. The only exothermic products correlating with the reactants are PCCH(+)((2)Π) + H((2)S). Two different pathways leading to these products that are apparently barrier-free have been found. Both pathways involve isomerization into open-chain intermediates followed by direct elimination of a hydrogen atom. The possibility of spin-crossing has been considered because the species on the singlet surface are considerably more stable than those on the triplet one. On the singlet surface, there are other possible channels for the reaction, namely, cyclic PC(2)H(+)((2)A') + H((2)S) and CCP(+)((1)Σ) + H(2) ((1)Σ(g)(+)). A computational kinetic study shows that, in agreement with the experimental evidence, the major products are PCCH(+)((2)Π) + H((2)S) at all temperatures. Only at very high temperatures is CCP(+)((1)Σ) + H(2) ((1)Σ(g)(+)) formed in non-negligible amounts. Therefore, only PCCH(+) should be formed in the interstellar medium.  相似文献   

18.
The reaction between chloranil and N-benzyldihydronicotinamide(BNAH)in boratebuffer/DMF was investigated.The reaction mixture gave a strong esr signal,which is consistentwith that of chloranil anion radical,and tetrachlorohydrophenol(QH_2)and N-benzylnicotinamide(BNA~+)were obtained as the sole products.When the reaction was run in benzene solution,a greencoloured charge-transfer complex between the reactants could be isolated,which decomposed in polarsolvents to give BNA-+ and QH_2.Based on kinetic studies by esr spectroscopy by the stopped-flowtechnique,a two-step electron-transfer mechanism for the reactionis proposed in contrast to thehydride-transfer mechanism reported in the literature.  相似文献   

19.
The ozone molecule possesses a unique and distinctive (17)O excess (Δ(17)O), which can be transferred to some of the atmospheric molecules via oxidation. This isotopic signal can be used to trace oxidation reactions in the atmosphere. However, such an approach depends on a robust and quantitative understanding of the oxygen transfer mechanism, which is currently lacking for the gas-phase NO(2) + O(3) reaction, an important step in the nocturnal production of atmospheric nitrate. In the present study, the transfer of Δ(17)O from ozone to nitrate radical (NO(3)) during the gas-phase NO(2) + O(3) → NO(3) + O(2) reaction was investigated in a series of laboratory experiments. The isotopic composition (δ(17)O, δ(18)O) of the bulk ozone and the oxygen gas produced in the reaction was determined via isotope ratio mass spectrometry. The Δ(17)O transfer function for the NO(2) + O(3) reaction was determined to be: Δ(17)O(O(3)?) = (1.23 ± 0.19) × Δ(17)O(O(3))(bulk) + (9.02 ± 0.99). The intramolecular oxygen isotope distribution of ozone was evaluated and results suggest that the excess enrichment resides predominantly on the terminal oxygen atoms of ozone. The results obtained in this study will be useful in the interpretation of high Δ(17)O values measured for atmospheric nitrate, thus leading to a better understanding of the natural cycling of atmospheric reactive nitrogen.  相似文献   

20.
《Chemical physics letters》1986,126(2):149-152
The flash photolysis-visible absorption technique has been used to measure rate constants for the reaction NO + NO3 → 2NO2 (1) over the temperature range 224–328 K. The temperature dependence of the rate constant is given by the expression k1(T) = (1.59 ± 0.32) × 10−11exp(122/T) cm3 molecule−1 s−1 where the stated uncertainties refer to the ± 2σ limits from both random and systematic errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号