首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of two supercharging reagents, m-nitrobenzyl alcohol (m-NBA) and sulfolane, on the charge-state distributions and conformations of myoglobin ions formed by electrospray ionization were investigated. Addition of 0.4% m-NBA to aqueous ammonium acetate solutions of myoglobin results in an increase in the maximum charge state from 9+ to 19+, and an increase in the average charge state from 7.9+ to 11.7+, compared with solutions without m-NBA. The extent of supercharging with sulfolane on a per mole basis is lower than that with m-NBA, but comparable charging was obtained at higher concentration. Arrival time distributions obtained from traveling wave ion mobility spectrometry show that the higher charge state ions that are formed with these supercharging reagents are significantly more unfolded than lower charge state ions. Results from circular dichroism spectroscopy show that sulfolane can act as chemical denaturant, destabilizing myoglobin by ∼1.5 kcal/mol/M at 25 °C. Because these supercharging reagents have low vapor pressures, aqueous droplets are preferentially enriched in these reagents as evaporation occurs. Less evaporative cooling will occur after the droplets are substantially enriched in the low volatility supercharging reagent, and the droplet temperature should be higher compared with when these reagents are not present. Protein unfolding induced by chemical and/or thermal denaturation in the electrospray droplet appears to be the primary origin of the enhanced charging observed for noncovalent protein complexes formed from aqueous solutions that contain these supercharging reagents, although other factors almost certainly influence the extent of charging as well.  相似文献   

2.
The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3–5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed.  相似文献   

3.
The addition of m-nitrobenzyl alcohol (m-NBA) was shown previously (Lomeli et al., J. Am. Soc. Mass Spectrom. 2009, 20, 593–596) to enhance multiple charging of native proteins and noncovalent protein complexes in electrospray ionization (ESI) mass spectra. Additional new reagents have been found to “supercharge” proteins from nondenaturing solutions; several of these reagents are shown to be more effective than m-NBA for increasing positive charging. Using the myoglobin protein-protoporphyrin IX (heme) complex, the following reagents were shown to increase ESI charging: benzyl alcohol, m-nitroacetophenone, m-nitrobenzonitrile, o-NBA, m-NBA, p-NBA, m-nitrophenyl ethanol, sulfolane (tetramethylene sulfone), and m-(trifluoromethyl)-benzyl alcohol. Based on average charge state, sulfolane displayed a greater charge increase (61%) than m-NBA (21%) for myoglobin in aqueous solutions. The reagents that promote higher ESI charging appear to have low solution-phase basicities and relatively low gas-phase basicities, and are less volatile than water. Another feature of mass spectra from some of the active reagents is that adducts are present on higher charge states, suggesting that a mechanism by which proteins acquire additional charge involves direct interaction with the reagent, in addition to other factors such as surface tension and protein denaturation.  相似文献   

4.
The use of m-nitrobenzyl alcohol (m-NBA) to enhance charging of noncovalent complexes formed by electrospray ionization from aqueous solutions was investigated. Addition of up to 1% m-NBA can result in a significant increase in the average charging of complexes, ranging from ∼13% for the homo-heptamer of NtrC4-RC (317 kDa; maximum charge state increases from 42+ to 44+) to ∼49% for myoglobin (17.6 kDa; maximum charge state increases from 9+ to 16+). Charge state distributions of larger complexes obtained from heated solutions to which no m-NBA was added are remarkably similar to those containing small amounts of m-NBA. Dissociation of the complexes through identical channels both upon addition of higher concentrations of m-NBA and heating is observed. These results indicate that the enhanced charging upon addition of m-NBA to aqueous electrospray solutions is a result of droplet heating owing to the high boiling point of m-NBA, which results in a change in the higher-order structure and/or dissociation of the complexes. For monomeric proteins and small complexes, the enhancement of charging is lower for heated aqueous solutions than from solutions with m-NBA because rapid folding of proteins from heated solutions that do not contain m-NBA can occur after the electrospray droplet is formed and is evaporatively cooled.  相似文献   

5.
Increased multiple charging of native proteins and noncovalent protein complexes is observed in electrospray ionization (ESI) mass spectra obtained from nondenaturing protein solutions containing up to 1% (vol/vol) m-nitrobenzyl alcohol (m-NBA). The increases in charge ranged from 8% for the 690 kDa α7β7β7α7 20S proteasome complex to 48% additional charge for the zinc-bound 29 kDa carbonic anhydrase-II protein. No dissociation of the noncovalently bound ligands/subunits was observed upon the addition of m-NBA. It is not clear if the enhanced charging is related to altered surface tension as proposed in the “supercharging” model of Iavarone and Williams (Iavarone, A. T.; Williams, E. R. J. Am. Chem. Soc. 2003, 125, 2319–2327). However, more highly charged noncovalent protein complexes have utility in relaxing slightly the mass-to-charge (m/z) requirements of the mass spectrometer for detection and will be effective for enhancing the efficiency for tandem mass spectrometry studies of protein complexes.  相似文献   

6.
A technique combining ion mobility spectrometry-mass spectrometry (IMS-MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain-length-normalized collision cross-section (CCS) and the maximum charge state (zM) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring-containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.  相似文献   

7.
Effects of covalent intramolecular bonds, either native disulfide bridges or chemical crosslinks, on ESI supercharging of proteins from aqueous solutions were investigated. Chemically modifying cytochrome c with up to seven crosslinks or ubiquitin with up to two crosslinks did not affect the average or maximum charge states of these proteins in the absence of m-nitrobenzyl alcohol (m-NBA), but the extent of supercharging induced by m-NBA increased with decreasing numbers of crosslinks. For the model random coil polypeptide reduced/alkylated RNase A, a decrease in charging with increasing m-NBA concentration attributable to reduced surface tension of the ESI droplet was observed, whereas native RNase A electrosprayed from these same solutions exhibited enhanced charging. The inverse relationship between the extent of supercharging and the number of intramolecular crosslinks for folded proteins, as well as the absence of supercharging for proteins that are random coils in aqueous solution, indicate that conformational restrictions induced by the crosslinks reduce the extent of supercharging. These results provide additional evidence that protein and protein complex supercharging from aqueous solution is primarily due to partial or significant unfolding that occurs as a result of chemical and/or thermal denaturation induced by the supercharging reagent late in the ESI droplet lifetime.  相似文献   

8.
Native non‐covalently bonded protein‐protein and protein‐substrate complexes are of great interest and have been extensively studied by electrospray ionization mass spectrometry (ESI‐MS). Multiply charged protein homomultimeric complexes are shown to form by ESI‐MS. This study addresses factors that can artificially induce the formation of multiply charged protein homomultimeric complexes. Cytochrome c (Cyt c) and ubiquitin, which are monomers in solution, were found to generate (Cyt c)mn+ by electrospray ionization (ESI). The homomultimeric complexes were not limited to dimeric complexes but include also multiply charged trimers, tetramers, and pentamers. The observation of these homomultimeric complexes has never been revealed from a Cyt c solution at the concentration as low as 10 μM. Increasing the concentration of Cyt c enhanced the formation of (Cyt c)mn+ as expected; however, the protein concentration does not affect the relative intensities of monomeric and dimeric complexes. Additionally the enrichment of NH4OH also promotes the formation of (Cyt c)mn+. Notably, source collision‐induced dissociations (source‐CID) of (Cyt c)mn+ alter the charge state distribution (CSD) and may lead to an incorrect interpretation of Cyt c conformations. Hence, extra care should be taken when using CSD to interpret the conformation of a protein derived from ESI‐MS.  相似文献   

9.
Investigations of gas-phase proton transfer reactions have been performed on protein molecular ions generated by electrospray ionization (ESI). Their reactions were studied in a heated capillary inlet/reactor prior to expansion into a quadrupole mass spectrometer. Results from investigations involving protonated horse heart cytochrome c and H, O suggest that Coulombit effects can lower reaction barriers as well as aid in entropically driven reactions. For example, the charge state distribution observed by a quadrupole mass spectrometer for multiply protonated cytochrome c without the addition of any reactive gas ranges from 9+ to 19+ , with the [M + 15H]15+ ion being the most intense peak. With the addition of H2O (proton affinity approximately 170.3±2 kcal/mol) to the capillary reactor at 120°C, the charge state distribution shifts to a lower charge, ranging from 13+ to less than 9+. Under the same conditions with argon (proton affinity approximately 100 kcal/mol) as the reactive gas, no shift in the charge state distribution is observed. The results demonstrate that proton transfer to water can occur for highly protonated molecular ions, a process that would be expected to be highly endothermic for singly protonated molecules (for which Coulombic destabilization is not significant). The results imply that the charge state distribution from ESI is somewhat dependent upon the mechanism and speed of the droplet evaporation/ion desolvation process, which may vary substantially with the ESI/mass spectrometry interface design.  相似文献   

10.
The supercharging effect of sulfolane on cytochrome c (cyt c) during electrospray ionization mass spectrometry (ESI-MS) in the absence of conformational effects was investigated. The addition of sulfolane on the order of 1 mM or greater to denaturing solutions of cyt c results in supercharging independent of protein concentration over the range of 0.1 to 10 μM. While supercharging was observed in the positive mode, no change in the charge state distribution was observed in the negative mode, ruling out polarity-independent factors such as conformational changes or surface tension effects. A series of sulfolane adducts observed with increasing intensity concurrent with increasing charge state suggests that a direct interaction between sulfolane and the charged sites of cyt c plays an important role in supercharging. We propose that charge delocalization occurring through large-scale dipole reordering of the highly polar supercharging reagent reduces the electrostatic barrier for proximal charging along the cyt c amino acid chain. Supporting this claim, supercharging was shown to increase with increasing dipole moment for several supercharging reagents structurally related to sulfolane.  相似文献   

11.
Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets. However, their charge state is not determined by the Rayleigh limit of a droplet of similar size to the protein; rather, their final charge state is determined by the electric field-induced emission of small charged solute ions and clusters from protein-containing ESI droplets. This theory predicts that the number of charges on a protein in ESI should be directly proportional to the square of the gas-phase protein diameter and to E*, the critical electric field strength at which ion emission from droplets occurs. This critical field strength is determined by the properties of the excess charge carriers (i.e., the solute) in droplets. Charge-state measurements of native-state proteins with molecular masses in the 5-76 kDa range in ammonium acetate and triethylammonium bicarbonate are in excellent agreement with theoretical predictions and strongly support the mechanism of protein ESI proposed here.  相似文献   

12.
Collapse to compact states in the gas phase, with smaller collision cross sections than calculated for their native-like structure, has been reported previously for some protein complexes although not rationalized. Here we combine experimental and theoretical studies to investigate the gas-phase structures of four multimeric protein complexes during collisional activation. Importantly, using ion mobility-mass spectrometry (IM-MS), we find that all four macromolecular complexes retain their native-like topologies at low energy. Upon increasing the collision energy, two of the four complexes adopt a more compact state. This collapse was most noticeable for pentameric serum amyloid P (SAP) which contains a large central cavity. The extent of collapse was found to be highly correlated with charge state, with the surprising observation that the lowest charge states were those which experience the greatest degree of compaction. We compared these experimental results with in vacuo molecular dynamics (MD) simulations of SAP, during which the temperature was increased. Simulations showed that low charge states of SAP exhibited compact states, corresponding to collapse of the ring, while intermediate and high charge states unfolded to more extended structures, maintaining their ring-like topology, as observed experimentally. To simulate the collision-induced dissociation (CID) of different charge states of SAP, we used MS to measure the charge state of the ejected monomer and assigned this charge to one subunit, distributing the residual charges evenly among the remaining four subunits. Under these conditions, MD simulations captured the unfolding and ejection of a single subunit for intermediate charge states of SAP. The highest charge states recapitulated the ejection of compact monomers and dimers, which we observed in CID experiments of high charge states of SAP, accessed by supercharging. This strong correlation between theory and experiment has implications for further studies as well as for understanding the process of CID and for applications to gas-phase structural biology more generally.  相似文献   

13.
Here, we report ion-helium collision cross sections (CCS) for a number of peptide, small protein, and peptide/protein ionic complexes. The CCS values reported here are compared to previously reported results.[1, 2] We also compare values for low charge state species, i.e., [M + H](+) and [M + 2H](2+), formed by MALDI with values for high charge state species formed by ESI, and the measured CCSs are compared with predicted CCS for solid-state and solution phase structures and calculated structures obtained by using a protein-protein structure algorithm generator, based on a combined Biomolecular complex Generation with Global Evaluation and Ranking[3] and Multi Dimensional Scaling[4].  相似文献   

14.
Electrothermal supercharging (ETS) with electrospray ionization produces highly charged protein ions from buffered aqueous solutions in which proteins have native folded structures. ETS increases the charge of ribonuclease A by 34%, whereas only a 6% increase in charge occurs for a reduced-alkylated form of this protein, which is unfolded and its structure is ~66% random coil in this solution. These results indicate that protein denaturation that occurs in the ESI droplets is the primary mechanism for ETS. ETS does not affect the extent of solution-phase hydrogen-deuterium exchange (HDX) that occurs for four proteins that have significantly different structures in solution, consistent with a droplet lifetime that is considerably shorter than observable rates of HDX. Rate constants for HDX of ubiquitin are obtained with a spatial resolution of ~1.3 residues with ETS and electron transfer dissociation of the 10+ charge-state using a single capillary containing a few μL of protein solution in which HDX continuously occurs. HDX protection at individual residues with ETS HDX is similar to that with reagent supercharging HDX and with solution-phase NMR, indicating that the high spray potentials required to induce ETS do not lead to HD scrambling.
Graphical Abstract ?
  相似文献   

15.
Understanding the charging mechanism of electrospray ionization is central to overcoming shortcomings such as ion suppression or limited dynamic range, and explaining phenomena such as supercharging. Towards that end, we explore what accumulated observations reveal about the mechanism of electrospray. We introduce the idea of an intermediate region for electrospray ionization (and other ionization methods) to account for the facts that solution charge state distributions (CSDs) do not correlate with those observed by ESI-MS (the latter bear more charge) and that gas phase reactions can reduce, but not increase, the extent of charging. This region incorporates properties (e.g., basicities) intermediate between solution and gas phase. Assuming that droplet species polarize within the high electric field leads to equations describing ion emission resembling those from the equilibrium partitioning model. The equations predict many trends successfully, including CSD shifts to higher m/z for concentrated analytes and shifts to lower m/z for sprays employing smaller emitter opening diameters. From this view, a single mechanism can be formulated to explain how reagents that promote analyte charging (“supercharging”) such as m-NBA, sulfolane, and 3-nitrobenzonitrile increase analyte charge from “denaturing” and “native” solvent systems. It is suggested that additives’ Brønsted basicities are inversely correlated to their ability to shift CSDs to lower m/z in positive ESI, as are Brønsted acidities for negative ESI. Because supercharging agents reduce an analyte’s solution ionization, excess spray charge is bestowed on evaporating ions carrying fewer opposing charges. Brønsted basicity (or acidity) determines how much ESI charge is lost to the agent (unavailable to evaporating analyte). Graphical Abstract
?  相似文献   

16.
Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.
?  相似文献   

17.
The origin of asymmetric charge and mass partitioning observed for gas-phase dissociation of multiply charged macromolecular complexes has been hotly debated. These experiments hold the potential to provide detailed information about the interactions between the macromolecules within the complex. Here, this unusual phenomenon of asymmetric charge partitioning is investigated for several protein homodimers. Asymmetric charge partitioning in these ions depends on a number of factors, including the internal energy, charge state, and gas-phase conformation of the complex, as well as the conformational flexibility of the protein monomer in the complex. High charge states of both cytochrome c and disulfide-reduced alpha-lactalbumin homodimers dissociate by a symmetrical charge partitioning process in which both fragment monomers carry away roughly an equal number of charges. In contrast, highly asymmetric charge partitioning dominates for the lower charge states. Cytochrome c dimer ions with eleven charges formed by electrospray ionization from two solutions in which the solution-phase conformation differs dissociate with dramatically different charge partitioning. These results demonstrate that these gas-phase complexes retain a clear "memory" of the solution from which they are formed, and that information about their solution-phase conformation can be obtained from these gas-phase dissociation experiments. Cytochrome c dimer ions formed from solutions in which the conformation of the protein is native show greater asymmetric charge partitioning with increasing ion internal energy. Cytochrome c dimers that are conformationally constrained with intramolecular cross-linkers undergo predominantly symmetric charge partitioning under conditions where asymmetric charge partitioning is observed for cytochrome c dimers without cross-links. Similar results are observed for alpha-lactalbumin homodimers. These results provide convincing evidence that the origin of asymmetric charge partitioning in these homodimers is the result of one of the protein monomers unfolding in the dissociation transition state. A mechanism that accounts for these observations is proposed.  相似文献   

18.
Hemoglobin (Hb) (α2β2) is a tetrameric protein–protein complex. Collision cross sections, hydrogen exchange levels, and tandem mass spectrometry have been used to investigate the properties of gas-phase monomer, dimer, and tetramer ions of adult human hemoglobin (Hb A, α2β2), and two variant hemoglobins: fetal hemoglobin (Hb F, α2γ2) and sickle hemoglobin (Hb S, α2β2, E6V[β]). All three proteins give similar mass spectra. Monomers of Hb S and Hb F have similar cross sections, ca. 10% greater than those of Hb A. Cross sections of dimer ions of Hb S are 11% greater than those of Hb A and 6% greater than those of Hb F. Tetramers of Hb S are 13% larger than tetramers of Hb A or Hb F. Monomers and dimers of all three Hb have similar hydrogen-deuterium exchange (HDX) levels. Tetramers of Hb S exchange 16% more hydrogens than Hb A and Hb F. In tandem mass spectrometry, monomers of Hb S and Hb F require ca. 10% greater internal energy for heme loss than Hb A. Dimers (+11) of Hb A and Hb S dissociate to monomers with asymmetrical charge division; dimers of Hb F (+11) dissociate with nearly equal charge division. Tetramer ions dissociate to monomers and trimers, unlike solution Hb, which dissociates to dimers. The most stable dimers are from Hb S; the most stable tetramers from Hb F. The results with Hb S show that a single mutation in the β chain can change the physical properties of this gas-phase protein–protein complex.  相似文献   

19.
Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of alpha-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some solution-phase information can be obtained from these gas-phase dissociation experiments.  相似文献   

20.
Addition of 1.0?mM LaCl3 to aqueous ammonium acetate solutions containing proteins in their folded native forms can result in a significant increase in the molecular ion charging obtained with electrospray ionization as a result of cation adduction. In combination with m-nitrobenzyl alcohol, molecular ion charge states that are greater than the number of basic sites in the protein can be produced from these native solutions, even for lysozyme, which is conformationally constrained by four intramolecular disulfide bonds. Circular dichroism spectroscopy indicates that the conformation of ubiquitin is not measurably affected with up to 1.0?M LaCl3, but ion mobility data indicate that the high charge states that are formed when 1.0?mM LaCl3 is present are more unfolded than the low charge states formed without this reagent. These and other results indicate that the increased charging is a result of La3+ preferentially adducting onto compact or more native-like conformers during ESI and the gas-phase ions subsequently unfolding as a result of increased Coulomb repulsion. Electron capture dissociation of these high charge-state ions formed from these native solutions results in comparable sequence coverage to that obtained for ions formed from denaturing solutions without supercharging reagents, making this method a potentially powerful tool for obtaining structural information in native mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号