首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《光谱学快报》2013,46(4-5):645-659
Abstract

Steady‐state absorption, fluorescence excitation, and emission spectra of 6‐methoxy quinoline (6‐MQ) were measured at room temperature in cyclohexane, dioxane, ethanol, acetonitrile, water, and water–dioxane solvents. Absorption spectra of cyclohexane, n‐hexane, and isopentane solutions show resolved vibronic structure at room temperature. However, the excitation spectrum of cyclohexane solution is structureless and is found to be emission wavelength dependent, indicating the formation of at least two distinct species in the ground state. Similar behavior was observed in dioxane and water–dioxane solutions. For all other solutions, the fluorescence excitation spectrum of 6‐MQ was found to be the same for different emissions. Emission of 6‐MQ in all solvents consisted of two bands with their maxima around 355 nm (I) and 430 nm (II), the actual positions and the relative intensities being dependent on the solvent used. The bands I and II were respectively attributed to normal and protonated/H‐bonded species of either 1La or 1Lb states or mixed (1La/1Lb) state of ππ* character. Fluorescence decay of this dye in all solvents monitored over each emission maximum showed biexponential behavior, and the analysis yielded two different lifetime components for each emission band. The short and long fluorescence decay components were respectively in the range of 0.30–3.00 ns and 18–20 ns. The observed emission characteristics coupled with the nature of the fluorescence polarization spectra and two different decay components for each emission suggest the existence of two different conformers having two different excited electronic states.  相似文献   

2.
Steady-state absorption, fluorescence excitation and emission spectra of 4-(N,N-dimethylamino)benzonitrile (DMABN) have been measured at room temperature in cyclohexane, 1,4-dioxane, dichloromethane, and acetonitrile solutions. The fluorescence spectra of DMABN are found to exhibit dual emission in 1,4-dioxane, dichloromethane, and acetonitrile solutions and single emission in cyclohexane solution. The effect of solvent polarity and excitation wavelength on the emission spectra has also been studied. The fluorescence excitation spectra of DMABN monitored at the emission bands are different. The presence of two different conformations of the same molecule in the ground state has lead to two close lying excited states; local excited (LE) and charge transfer (CT), and thereby results in the dual fluorescence of the compound. The experimental studies were supported by ab initio density functional theory (DFT) calculations performed at the B3LYP/6-31Gd level of theory. On the basis of the experimental results and our theoretical calculations, we suggest that there are two conformers of DMABN, which are stable in the ground state, equilibrated in solution at room temperature that give rise dual fluorescence upon excitation.  相似文献   

3.
观测了2-(2’-羟基苯基)苯并噻唑(HBT)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了溶剂极性对HBT发生激发态分子内质子转移(ESIPT)影响的机制。吸收光谱表明在常态条件下,HBT在各种溶剂中都以烯醇式构型和酮式构型共同存在,但以烯醇式构型占绝大多数。荧光光谱表明在纯环己烷溶剂中,HBT被紫外光激发时,绝大多数烯醇式构型发生ESIPT转变为酮式构型,分子的ESIPT效率最大。在含有乙醇的极性溶剂中,HBT烯醇式会形成溶剂化的烯醇式构型,阻碍分子发生ESIPT反应。溶剂中乙醇含量愈多极性愈强,溶剂化烯醇式的成份就愈多,HBT的ESIPT效率就愈低。以400 nm光激发HBT溶液时,在510 nm处发现酮式构型荧光,从而确认了400 nm处的弱吸收是酮式构型的吸收;且在436和456nm处还有新的荧光峰,分析其可能来源于酮式构型去质子化阴离子的发射。  相似文献   

4.
观测了2-(2′-羟基苯基)苯并噻唑(HBT)在不同极性溶剂中的吸收光谱和荧光光谱,详细研究了溶剂极性对HBT发生激发态分子内质子转移(ESWT)影响的机制。吸收光谱表明在常态条件下,HBT在各种溶剂中都以烯醇式构型和酮式构型共同存在,但以烯醇式构型占绝大多数。荧光光谱表明在纯环己烷溶剂中,HBT被紫外光激发时,绝大多数烯醇式构型发生ESIPPT转变为酮式构型,分子的ESIPT效率最大。在含有乙醇的极性溶剂中,HBT烯醇式会形成溶剂化的烯醇式构型,阻碍分子发生ESIPT反应。溶剂中乙醇含量愈多极性愈强,溶剂化烯醇式的成份就愈多,HBT的ESIPT效率就愈低。以400nm光激发HBT溶液时,在510nm处发现酮式构型荧光,从而确认了400nm处的弱吸收是酮式构型的吸收;且在436和456nm处还有新的荧光峰,分析其可能来源于酮式构型去质子化阴离子的发射。  相似文献   

5.
Prodan and Laurdan are fluorescent probes largely used in biological systems. They were synthetized to be sensitive to the environment polarity, and their fluorescent emission spectrum shifts around 120 nm, from cyclohexane to water. Although accepted that their emission spectrum is composed by two emission bands, the origin of these two bands is still a matter of discussion. Here we analyze the fluorescent spectra of Prodan and Laurdan in solvents of different polarities, both by decomposing the spectrum into two Gaussian bands and by computing the Decay Associated Spectra (DAS), the latter with time resolved fluorescence. Our data show that the intensity of the lower energy emission band of Prodan and Laurdan (attributed, in the literature, to the decay of a solvent relaxed state) is higher in cyclohexane than in water, showing a decrease as the polarity of the medium increases. Moreover, in all solvents studied here, the balance between the two emission bands is not dependent on the temperature, strongly suggesting two independent excited states. Both bands were found to display a red shift as the medium polarity increases. We propose here a new interpretation for the two emission bands of Prodan and Laurdan in homogeneous solvents: they would be related to the emission of two independent states, and not to a pair of non-relaxed and solvent relaxed states.  相似文献   

6.
We studied the steady-state fluorescence spectra of solutions of FET (4′-(diethylamino)-3-hydroxyflavone) in acetonitrile that were excited at different temperatures by quanta with different energies located in the range of the main absorption band and in its long-wavelength wing. We found that, at room temperature, the emission intensity ratio of the bands of the normal and tautomeric forms, which are located at 505 and 570 nm, respectively, depends on the excitation wavelength. In the range of the main absorption band 300–360 nm, this ratio remains nearly the same, i.e., 1.45, while, upon excitation in the range of the long-wavelength wing 360–380 nm of the main band, it decreases to 1.33 at a wavelength of 460 nm. In this same range, a long-wavelength excitation effect that is unusual for liquid inviscid solvents at room temperature, i.e., a bathochromic shift of the entire short-wavelength emission band by 11 nm, manifests itself. We propose to explain these dependences using energy diagrams, which take into account the dependence of free energy on the orientational polarization of the polar solvent. The observed effect of the long-wavelength shift of the fluorescence spectrum with increasing excitation wavelength is explained in terms of the inhomogeneous broadening of electronic spectra of polar solutions, and it should be described using the scheme of energy states that takes into account sublevels of orientational broadening due to orientational dipole-dipole interactions of the fluorophore with nearest molecules of the polar solvent, as well as the relation between the fluorophore lifetime in the excited state and the dielectric relaxation time of solvent molecules in the field of the fluorophore dipole.  相似文献   

7.
The excitation wavelength dependence of the steady-state and time-resolved emission spectra of ethyl 5-(4-aminophenyl)-3-amino-2,4-dicyanobenzoate (EAADCy) in tetrahydrofuran (THF) at room temperature has been examined. It is found that the ratio of the fluorescence intensity of the long-wavelength and short-wavelength fluorescence bands strongly depends on the excitation wavelength, whereas the wavelengths of the fluorescence excitation and fluorescence bands maxima are independent on the observation/excitation wavelengths. The dynamic Stokes shift of fluorophore in locally excited (LE) and intramolecular charge transfer (ICT) states has been studied with a time resolution about 30 ps. The difference between Stokes shift in the LE and ICT states was attributed to the solvent response to the large photoinduced dipole moment of EAADCy in the fluorescent charge transfer state. On this base we can state that, the relaxation of the polar solvent molecules around the fluorophore was observed.  相似文献   

8.
The photophysical properties of the three 1,3,4-oxadiazole derivatives containing fluorene (Ox-FL); fluorene and phenolphtaleine (Ox-FL-FF); or fluorene and bisphenol A (Ox-FL-BPA) moieties in the main chain were investigated by the fluorescence and absorption spectroscopy in different solvents and in the solid state. The electronic absorption spectra included a strong absorption band located in the 270–395 nm region, with a maxima around at 302 nm. The fluorescence excitation spectra were also characterized by one broad band, appearing in the wavelength range of 220–340 nm. All samples displayed the emission bands around 356–373 nm and exhibit high quantum yields ranged from 31.61 to 90.77%, in chloroform solution. The sensitivity of the emission spectra on medium characteristics (polarity, acidity and basicity) were evaluated by using the Catalan solvent scale and the fluorescence titration with a dilute acid solution.  相似文献   

9.
对三苯胺进行溴代和C-N偶联反应合成4-萘基三苯胺(a),对脱氢枞酸进行酯化、溴代、硝化、还原和C-N偶联反应合成13-[N,N-(4-萘基苯基)-苯基]胺基-脱异丙基脱氢枞酸甲酯(b)及13-[N,N-双(4-萘基苯基)]胺基-脱异丙基脱氢枞酸甲酯(c)两个化合物,通过1H MNR,13C MNR及MS对化合物的结构进行表征。为了研究化合物结构与光谱性能之间的关系,首先利用Gaussian 09程序采用密度泛函DFT/B3LYP方法,对三个化合物的空间构型进行全优化,得到它们的键长、键角和二面角,对比发现脱氢枞酸骨架和萘环的引入会影响化合物的共平面性,而萘环的引入会增大化合物的共轭程度。光谱性能方面,研究了三种化合物在甲醇、二氧六环、四氢呋喃、二氯甲烷和环己烷这5种极性逐渐减小的溶剂中的荧光发射光谱和紫外吸收光谱。结果表明,在荧光光谱中,化合物a,b和c在不同极性溶剂中最大荧光发射波长均有不同程度位移,在甲醇中最大,在环己烷中最小,但是位移并非随着极性的增大而只发生红移,在二氯甲烷、四氢呋喃和二氧六环3种极性依次增大的溶剂中,a,b,c的荧光发射波长均随着溶剂极性的增大而发生较大程度的蓝移;在同一溶剂中,化合物b和c相对于a的荧光发射波长依次发生红移,c的红移程度与b差距不大。紫外吸收光谱中,三个化合物在不同极性溶剂中的最大吸收波长也有差异,在200~250 nm区间,三个化合物均在二氯甲烷中有较大位移,在300~350 nm区间,在甲醇中位移较大,而在250~300 nm区间,最大吸收波长差别不大;在同一溶剂中,它们在300~350 nm区间的最大吸收波长差别较大,化合物c较a红移26 nm。结合结构优化所得数据可以证明,化合物的共轭程度对荧光发射光谱和紫外吸收光谱均有影响,而共平面性对荧光发射光谱影响较大。化合物a,b和c在不同极性溶剂中荧光发射光谱和紫外吸收光谱的较大变化,表明它们有明显的溶致变色行为,具有作为分子探针探测外部环境极性大小的潜能。  相似文献   

10.
In the fluorescence spectra only morphine exhibits large red shifts of the maxima on increasing solvent polarity. In the phosphorescence spectra, phenol, anisole, and 3-methoxyphenol exhibit large red shifts of the maxima on going from nonpolar to polar solvents. For the latter, the results are interpreted in terms of charge-transfer-to-solvent (CTTS) transitions. For morphine, 2- and 4-methoxyphenol, the phosphorescence maxima occur at long wavelengths in both nonpolar and polar solvents, and this is interpreted in terms of CTTS and intramolecular charge transfer processes. The red-shift of the morphine fluorescence band on going to polar solvents is similarly interpreted as a combination of CTTS and intramolecular charge transfer transitions.  相似文献   

11.
采用柠檬酸热解法制备了石墨烯量子点(GQDs),研究了非极性溶剂戊烷,极性溶剂乙醇、丙酮、乙二醇对GQDs荧光性质的影响。透射电子显微镜(TEM)和原子力显微镜(AFM)图像表明,制备的GQDs尺寸分布在2~12 nm(平均尺寸为4.9 nm),分散均匀,高度分布在0.5~2 nm。吸收光谱表明,GQDs具有明显的紫外吸收特性,吸收峰位于259 nm和274 nm。光致发光谱表明,GQDs的发光具有明显的溶剂依赖性。GQDs在极性溶剂乙醇、丙酮、乙二醇中,发光峰的位置依赖于激发波长,发射波长在可见光区。而在非极性溶剂戊烷中,GQDs表现出对激发波长不依赖的荧光性能,且发射波长在近紫外。  相似文献   

12.
Quinoxalin-2(1H)-one and its derived 3-Benzylquinoxalin-2(1H)-one were synthesized and characterized by UV–visible spectroscopy. The changes displayed by the photophysical properties of these molecules in different solvents can be explained in terms of a sum of dielectric polarity and hydrogen bonding effects taking part in the stabilisation of the structure. 3-Benzylquinoxalin-2(1H)-one exhibits two fluorescence emission bands (F a and F n) in very polar solvents and one band (F n) in low polar solvents. These bands are assigned on the basis of the absorption and emission solvent effect. The abnormal fluorescence (F a) observed in very polar solvents is attributed to an intermolecular interaction between solute and solvent molecules in the excited state (exciplex formation).  相似文献   

13.
We studied the properties of the emission, absorption and excitation of dual fluorescence of (N,N′?dimethylamino)benzonitrile in a polar aprotic solvent acetonitrile under selective irradiation of solutions by light with different energies of quanta to elucidate mechanisms of dual fluorescence arising in this solvent at different temperatures in the range 274–313 K. In all cases, dual fluorescence of the solute in acetonitrile was observed, which is caused by emission from locally excited Franck-Condon and charge-transfer states. A change in the energy of excitation quanta has a weak effect on the position of the fluorescence bands; however, the intensity ratio between the bands noticeably changes in favour of the intensity of the long-wavelength band at excitation in the range of the long-wavelength absorption band. An interesting and unusual fact is that solution heating is accompanied by essential growth of quantum yield of dual fluorescence at all wavelengths of the excitation. To explain the observed effects, the same dependences were measured and analysed for DMABN in neutral solvent n-hexane in the same conditions. We involve also the data of quantum-mechanical calculations, which show that there is a considerable probability of occurrence in solutions of DMABN rotational isomers with differing orientation of the dimethylamino group with respect to the benzonitrile. In the excited state, these have different charge-transfer rates, resulting in a modulation in the intensity ratio of the observed fluorescence bands with change excitation energy quanta on the red wing of the absorption band, doi: 10.1134/S0030400X12050219.  相似文献   

14.
The emission spectra of naphthalene (NP)–triethylamine (TEA) systems were measured under steady-state illumination conditions in some protic and aprotic solvent-tetrahydrofuran (THF) mixtures. The fluorescence spectrum of the NP–TEA system in THF could be separated into two component bands (band A at 329 nm (fluorescence of NP) and band B at 468 nm (emission from an intermolecular exciplex)). The intensities of bands A and B decreased with increasing solvent polarity. The intensity of band B also decreased owing to the hydrogen-bonding interaction between TEA and protic solvents, but in this case the intensity of band A increased. The decrease in the intensity of band A with increasing solvent polarity is considered to be caused by the enhanced formation of an ion-pair parallel to the formation of an exciplex with increasing solvent polarity. The decrease in the intensity of band B is considered to be caused by the enhanced formation of ion-pair both parallel to and through the formation of the exciplex. The increase in the intensity of band A and the decrease in that of band B upon the addition of protic solvents is caused by the decrease in the concentration of free TEA. Acetonitrile only has a polar effect and trichloroacetic acid only has a hydrogen-bonding (protonation) effect, while alcohols have both the effects.  相似文献   

15.
The photophysicochemical properties of selected fluoroquinolones in different solvents of various physical properties, including polarity and hydrogen bonding ability, were investigated using steady state fluorescence spectroscopy. The solvent-dependant fluorescence emission spectra of selected fluoroquinolones, namely ciprofloxacin (CIPR) and enrofloxacin (ENRO), were employed to gain insights concerning its photophysicochemical properties of interests. Interestingly, fluorescence spectra of the selected drugs exhibited structured emission spectra in nonpolar solvents such as hexane, whereas unstructured spectra were observed in more polar solvents such as alcohols and water. Also, a notable bathochromic shift in $ \lambda_{{\max }}^{{em}} $ was observed in fluorescence spectra of both drugs with increasing solvent polarity that resulted in biphasic behavior upon applying the Lippert-Mataga correlation that correspond to general and specific solvent effects. Applying the Lippert-Mataga correlation to the fluorescence spectra of CIPR and ENRO in various solvents was employed to estimate the dipole moment difference between the ground and excited states of them, $ \Delta \mu \left( {{\mu_e} - {\mu_g}} \right) $ , where obtained results revealed the values of 9.4 and 16.2 Debye for the LE and ICT states of ENRO, respectively, and 8.0 and 16.2 Debye for the LE and ICT states of CIPR, respectively. Multiple linear regression analysis (MLRA) based on Kamlet-Taft equating was applied against absorption frequency (νabs), emission frequency (νem), Stokes shift (?ν), and fluorescence quantum yield (Φf), where obtained results revealed excellent correlation (R: 0.916–0.966) that are consistent with other results considering the effect of solvent polarizability, hydrogen bonding ability, and viscosity on the photophysicochemical properties of the studied fluoroquinolones.  相似文献   

16.
The excitation spectra and dependence of the luminescence spectra on the energy of excitation quanta were investigated for a laurdan molecule in glycerin. The most appreciable displacement of the emission spectra has been recorded for the most longwave luminescence band with a maximum in the region 500–510 nm. The relationship between the luminescence components of two emission bands with maxima at 425 and 500 nm depends strongly on the excitation energy. The dependences obtained are explained by the simultaneous existence of LE (localexcited) and TICT (twisted internal charge transfer) states and by the influence of the properties of the solvation sheath of laurdan, which invariably causes inhomogeneous broadening of the spectra of the polar solution molecules.  相似文献   

17.
3-羟基黄酮在不同极性和酸碱度溶剂中的光谱研究   总被引:2,自引:0,他引:2  
实验观测了3-羟基黄酮(3-HF)在不同极性溶剂中的吸收光谱和荧光光谱,发现在吸收光谱中有3个吸收带,峰值位于300和345 nm的两个吸收带较强,位于415 nm处的吸收带较弱。用345 nm作为激发光,观测到两个荧光带,其中峰值位于400 nm的荧光带为3-HF稀醇式构型的发射,随着溶剂极性的增大其强度增强,峰值位于526 nm的荧光带为3-HF互变异构体的发射,随着溶剂极性的增大其强度减弱,这表明溶剂极性阻碍质子转移的发生。用415 nm的光激发样品,在荧光光谱中发现了3个新荧光谱带,峰值分别位于440,471和515 nm,这3个荧光谱带归属至今未见报道。为了指认这3个荧光谱带,分别观测了3-HF在不同酸碱度溶液的荧光光谱及其吸收光谱,通过对这些光谱的分析研究,指认出荧光峰位于440和471 nm的荧光谱带为3-HF的两种阳离子的发射,峰值位于515 nm的荧光谱带为3-HF的阴离子的发射。  相似文献   

18.
The spectral characteristics of solutions of a dye with dual fluorescence, 1-methyl-2-(4-methoxy)phenyl-3-hydroxy-4(1H)-quinolone, in acetonitrile are studied upon selective excitation. This dye is a structural analogue of 3-hydroxyflavone and also exhibits excited-state proton transfer, which, as well as in the case of 3-hydroxyflavone, has a kinetic nature. The fluorescence spectra are studied upon excitation by photons of various energies, and the excitation spectra are recorded at wavelengths of different fluorescence bands. It is found that the intensity ratio of the emission of the normal and tautomeric forms (at wavelength of 415 and 518 nm, respectively) is almost the same (0.23–0.25) for excitation in the regions of the main and the second absorption bands. At the same time, in the case of excitation between these bands, this ratio decreases to 0.19. The second interesting feature is the existence of a third latent emission band peaked at about 480 nm, which is reliably detected upon excitation at wavelengths in the region of 400–450 nm. This study shows that this emission belongs to the anionic form of the dye. This form is also responsible for a decrease in the intensity ratio of the emission of the two main forms in the case of excitation between the first and second absorption bands.  相似文献   

19.
Modifications occurring in the fluorescence and excitation spectra of 3-monoethylamino-N-methylphthalimide (3 MANP) dissolved in nonpolar solvents (-hexane and methylcyclohexane) as a function of added n-butanol and n-propanol between -90 and 90°C were measured. The modifications were due to the presence of two types of centres resulting from the interaction of the solvent molecules with the nonpolar solvent on the one hand, and with the polar solvent on the other. The mixed complex character of the fluorescence band was not affected by the concentration of the solution in the range 10-7?5 x 10-4 mol/l. An attempt was made to establish a relationship between the emission due to the centres resulting from the interaction with the alcohol molecules and the association degree of the respective molecules.  相似文献   

20.
张芳  方炎 《光散射学报》2006,18(4):355-359
本文在室温下对C60分别在吡啶、甲苯和乙腈中的荧光了研究,实验表明:C60在吡啶中的荧光由以440nm、570nm和700nm为中心的三个荧光带组成;C60在甲苯中的荧光由以430nm和700nm为中心的两个荧光带组成;C60在乙腈中的荧光由以570nm和700nm为中心的两个荧光带组成。经比较分析发现C60-有机溶剂体系700nm区域的荧光带的发射与溶剂的种类无关,而440nm和570nm区域的荧光带及其精细结构可以反映C60与溶剂分子的特殊相互作用。进一步提出C60-吡啶体系以570nm为中心的荧光带是由吡啶分子通过含孤对电子的N与C60形成的电荷转移络合物发出的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号