首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The system of equations \(\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u\), where A(·) ∈ ?n × n, B(·) ∈ ?n × m, S(·) ∈ Rn × m, is considered. The elements of the matrices A(·), B(·), S(·) are uniformly bounded and are functionals of an arbitrary nature. It is assumed that there exist k elements \({\alpha _{{i_i}{j_l}}}\left( \cdot \right)\left( {l \in \overline {1,k} } \right)\) of fixed sign above the main diagonal of the matrix A(·), and each of them is the only significant element in its row and column. The other elements above the main diagonal are sufficiently small. It is assumed that m = n ?k, and the elements βij(·) of the matrix B(·) possess the property \(\left| {{\beta _{{i_s}s}}\left( \cdot \right)} \right| = {\beta _0} > 0\;at\;{i_s}\; \in \;\overline {1,n} \backslash \left\{ {{i_1}, \ldots ,{i_k}} \right\}\). The other elements of the matrix B(·) are zero. The positive definite matrix H = {hij} of the following form is constructed. The main diagonal is occupied by the positive numbers hii = hi, \({h_{{i_l}}}_{{j_l}}\, = \,{h_{{j_l}{i_l}}}\, = \, - 0.5\sqrt {{h_{{i_l}}}_{{j_l}}} \,\operatorname{sgn} \,{\alpha _{{i_l}}}_{{j_l}}\left( \cdot \right)\). The other elements of the matrix H are zero. The analysis of the derivative of the Lyapunov function V(x) = x*H–1x yields hi\(\left( {i \in \overline {1,n} } \right)\) and λi ≤ 0 \(\left( {i \in \overline {1,n} } \right)\) such that for S(·) = H?1ΛB(·), Λ = diag(λ1, ..., λn), the system of the considered equations becomes globally exponentially stable. The control is robust with respect to the elements of the matrix A(·).  相似文献   

2.
For ?1≤B<A≤1, let \(\mathcal {S}^{*}(A,B)\) denote the class of normalized analytic functions \(f(z)= z+{\sum }_{n=2}^{\infty }a_{n} z^{n}\) in |z|<1 which satisfy the subordination relation z f (z)/f(z)?(1 + A z)/(1 + B z) and Σ?(A,B) be the corresponding class of meromorphic functions in |z|>1. For \(f\in \mathcal {S}^{*}(A,B)\) and λ>0, we shall estimate the absolute value of the Taylor coefficients a n (?λ,f) of the analytic function (f(z)/z)?λ . Using this we shall determine the coefficient estimate for inverses of functions in the classes \(\mathcal {S}^{*}(A,B)\) and Σ?(A,B).  相似文献   

3.
Let M n be an n-dimensional closed submanifold of a sphere with parallel normalized mean curvature vector. Denote by S and H the squared norm of the second fundamental form and the mean curvature of M n , respectively. Assume that the fundamental group \({\pi_{1}(M^{n})}\) of M n is infinite and \({S\, \leqslant\, S(H)=n+\frac{n^{3}H^{2}}{2(n-1)}-\frac{n(n-2)H}{2(n-1)}\sqrt{n^{2}H^{2}+4(n-1)}}\), then S is constant, S = S(H), and M n is isometric to a Clifford torus \({S^{1}(\sqrt{1-r^{2}})\times S^{n-1}(r)}\) with \({r^{2}\leqslant \frac{n-1}{n}}\).  相似文献   

4.
For any real number β > 1, let S n (β) be the partial sum of the first n items of the β-expansion of 1. It was known that the approximation order of 1 by S n (β) is β ?n for Lebesgue almost all β > 1. We consider the size of the set of β > 1 for which 1 can be approximated with the other orders \({\beta^{-\varphi(n)}}\) , where \({\varphi}\) is a positive function defined on \({\mathbb N}\) . More precisely, the size of the sets
$$\left\{\beta\in \mathfrak{B}:\limsup_{n\rightarrow\infty}\frac{\log_{\beta}(1-S_n(\beta))}{\varphi(n)}=-1\right\}$$
and
$$\left\{\beta\in \mathfrak{B}:\liminf_{n\rightarrow\infty}\frac{\log_{\beta}(1-S_n(\beta))}{\varphi(n)}=-1\right\}$$
are determined, where \({\mathfrak{B}=\{ \beta>1:\beta \text{ is not a simple Parry number}\}}\) .
  相似文献   

5.
The “classical” parking functions, counted by the Cayley number (n+1) n?1, carry a natural permutation representation of the symmetric group S n in which the number of orbits is the Catalan number \({\frac{1}{n+1} \left( \begin{array}{ll} 2n \\ n \end{array} \right)}\). In this paper, we will generalize this setup to “rational” parking functions indexed by a pair (a, b) of coprime positive integers. These parking functions, which are counted by b a?1, carry a permutation representation of S a in which the number of orbits is the “rational” Catalan number \({\frac{1}{a+b} \left( \begin{array}{ll} a+b \\ a \end{array} \right)}\). First, we compute the Frobenius characteristic of the S a -module of (a, b)-parking functions, giving explicit expansions of this symmetric function in the complete homogeneous basis, the power-sum basis, and the Schur basis. Second, we study q-analogues of the rational Catalan numbers, conjecturing new combinatorial formulas for the rational q-Catalan numbers \({\frac{1}{[a+b]_{q}} {{\left[ \begin{array}{ll} a+b \\ a \end{array} \right]}_{q}}}\) and for the q-binomial coefficients \({{{\left[ \begin{array}{ll} n \\ k \end{array} \right]}_{q}}}\). We give a bijective explanation of the division by [a+b] q that proves the equivalence of these two conjectures. Third, we present combinatorial definitions for q, t-analogues of rational Catalan numbers and parking functions, generalizing the Shuffle Conjecture for the classical case. We present several conjectures regarding the joint symmetry and t = 1/q specializations of these polynomials. An appendix computes these polynomials explicitly for small values of a and b.  相似文献   

6.
The system
$$\frac{{dx}}{{dt}} = A\left( \cdot \right)x + B\left( \cdot \right)u,{\kern 1pt} \frac{{dy}}{{dt}} = A\left( \cdot \right)y + B\left( \cdot \right)u + D\left( {C*y - v} \right)$$
where v = C*x is an output, u = S*y is a control, A(·) ∈ R n × n , B(·) ∈ R n × (np), C ∈ R n × (np), and D ∈ R n × (np), is considered. The elements αij(·) and βij(·) of the matrices A(·) and B(·) are arbitrary functionals satisfying the conditions
$$\mathop {\sup }\limits_{\left( \cdot \right)} |{\alpha _{ij}}\left( \cdot \right)| < \infty \left( {i,j \in 1,n} \right),\mathop {\sup }\limits_{\left( \cdot \right)} |{\beta _{ij}}\left( \cdot \right)| < \infty \left( {i \in 1,n,j \in 1,n - p} \right).$$
It is assumed that A(·) ∈ Z 1Z 3 and A*(·) ∈ Z 1Z 3, where Z 1 is the class of matrices in which the first p elements of the kth superdiagonal are sign-definite and the elements above them are sufficiently small. The class Z 3 differs from Z t1 in that the elements between this superdiagonal and the (k + 1)th row are sufficiently small. If k > p, then the elements of the p × p square in the upper left corner of the matrix are sufficiently small as well. By using special quadratic Lyapunov functions, a matrix D for which y(t)–x(t) → 0 exponentially as t → ∞ is first found, and then a matrix S for which the vectors x(t) and y(t) have the same property is constructed.
  相似文献   

7.
The Shanks transformation is a powerful nonlinear extrapolation method that is used to accelerate the convergence of slowly converging, and even diverging, sequences {A n }. It generates a two-dimensional array of approximations \({A^{(j)}_n}\) to the limit or anti-limit of {A n } defined as solutions of the linear systems
$A_l=A^{(j)}_n +\sum^{n}_{k=1}\bar{\beta}_k(\Delta A_{l+k-1}),\ \ j\leq l\leq j+n,$
where \({\bar{\beta}_{k}}\) are additional unknowns. In this work, we study the convergence and stability properties of \({A^{(j)}_n}\) , as j → ∞ with n fixed, derived from general linear sequences {A n }, where \({{A_n \sim A+\sum^{m}_{k=1}\zeta_k^n\sum^\infty_{i=0} \beta_{ki}n^{\gamma_k-i}}}\) as n → ∞, where ζ k  ≠ 1 are distinct and |ζ 1| = ... = |ζ m | = θ, and γ k  ≠ 0, 1, 2, . . .. Here A is the limit or the anti-limit of {A n }. Such sequences arise, for example, as partial sums of Fourier series of functions that have finite jump discontinuities and/or algebraic branch singularities. We show that definitive results are obtained with those values of n for which the integer programming problems
$\begin{array}{ll}{\quad\quad\quad\quad\max\limits_{s_1,\ldots,s_m}\sum\limits_{k=1}^{m}\left[(\Re\gamma_k)s_k-s_k(s_k-1)\right],}\\ {{\rm subject\,to}\,\, s_1\geq0,\ldots,s_m\geq0\quad{\rm and}\quad \sum\limits_{k=1}^{m} s_k = n,}\end{array}$
have unique (integer) solutions for s 1, . . . , s m . A special case of our convergence result concerns the situation in which \({{\Re\gamma_1=\cdots=\Re\gamma_m=\alpha}}\) and n = mν with ν = 1, 2, . . . , for which the integer programming problems above have unique solutions, and it reads \({A^{(j)}_n-A=O(\theta^j\,j^{\alpha-2\nu})}\) as j → ∞. When compared with A j ? A = O(θ j j α ) as j → ∞, this result shows that the Shanks transformation is a true convergence acceleration method for the sequences considered. In addition, we show that it is stable for the case being studied, and we also quantify its stability properties. The results of this work are the first ones pertaining to the Shanks transformation on general linear sequences with m > 1.
  相似文献   

8.
Let x: M n?1 → R n be an umbilical free hypersurface with non-zero principal curvatures. Two basic invariants of M under the Laguerre transformation group of R n are Laguerre form C and Laguerre tensor L. In this paper, n > 3) complete hypersurface with vanishing Laguerre form and with constant Laguerre scalar curvature R in R n , denote the trace-free Laguerre tensor by ?\(\widetilde L = L - \frac{1}{{n - 1}}tr\left( L \right)\) · Id. If \(\widetilde L = L - \frac{1}{{n - 1}}tr\left( L \right)\), then M is Laguerre equivalent to a Laguerre isotropic hypersurface; and if \({\sup _M}\left\| {\widetilde L} \right\| = \frac{{\sqrt {\left( {n - 1} \right)\left( {n - 2} \right)} R}}{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}},\), M is Laguerre equivalent to the hypersurface ?x: H 1 × S n?2 → R n .  相似文献   

9.
We consider quadratic functions f that satisfy the additional equation y2 f(x) =  x2 f(y) for the pairs \({ (x,y) \in \mathbb{R}^2}\) that fulfill the condition P(x, y) =  0 for some fixed polynomial P of two variables. If P(x, y) =  axbyc with \({ a , b , c \in \mathbb{R}}\) and \({(a^2 + b^2)c \neq 0}\) or P(x,y) =  x n ? y with a natural number \({n \geq 2}\), we prove that f(x) =  f(1) x2 for all \({x \in \mathbb{R}}\). Some related problems, admitting quadratic functions generated by derivations, are considered as well.  相似文献   

10.
A cyclic sequence of elements of [n] is an (nk)-Ucycle packing (respectively, (nk)-Ucycle covering) if every k-subset of [n] appears in this sequence at most once (resp. at least once) as a subsequence of consecutive terms. Let \(p_{n,k}\) be the length of a longest (nk)-Ucycle packing and \(c_{n,k}\) the length of a shortest (nk)-Ucycle covering. We show that, for a fixed \(k,p_{n,k}={n\atopwithdelims ()k}-O(n^{\lfloor k/2\rfloor })\). Moreover, when k is not fixed, we prove that if \(k=k(n)\le n^{\alpha }\), where \(0<\alpha <1/3\), then \(p_{n,k}={n\atopwithdelims ()k}-o({n\atopwithdelims ()k}^\beta )\) and \(c_{n,k}={n\atopwithdelims ()k}+o({n\atopwithdelims ()k}^\beta )\), for some \(\beta <1\). Finally, we show that if \(k=o(n)\), then \(p_{n,k}={n\atopwithdelims ()k}(1-o(1))\).  相似文献   

11.
For p, q > 0 we study operators T on the Bergman space \({A_{2}(\mathbb{D)}}\) in the disk such that \({\left(\sum_{j}\Vert T\Delta_{j}\Vert_{p}^{q}\right)^{1/q}<\infty,}\) where the norms \({\Vert\cdot\Vert_{p}}\) are in the Schatten class S p (A 2), the projection \({\Delta_{j}f=\sum_{n\in I_{j}}a_{n}z^{n}}\) for \({f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}}\) and \({I_{j}=[2^{j}-1,2^{j+1} )\cap(\mathbb{N}\cup\{0\})}\) for \({j\in\mathbb{N}\cup\{0\}.}\) We consider the relation of this property with mixed norms of the Berezin transform of T and of the related function \({f_{T}(z)={\Vert}T(k_{z})\Vert}\) where k z is the normalized Bergman kernel. These classes of operators denoted by S(p, q) are closely related when assumed to be positive with other sets of operators, like the class of positive operators on A 2 for which \({\left(\sum_{j\geq0}(\sum_{n\in I_{j}}|\left\langle T^pe_{n},e_{n}\right\rangle |)^{q/p}\right)^{1/q}<\infty}\) , where \({\{e_{n}\}_{n\geq0}}\) is the canonical basis of A 2; also we study the relation of Toeplitz operators in S(p, q) with the Schatten-Herz classes, where the decomposition is through dyadic annuli of the domain \({\mathbb{D}}\) .  相似文献   

12.
Let g be a holomorphic or Maass Hecke newform of level D and nebentypus χD, and let a g (n) be its n-th Fourier coefficient. We consider the sum \({S_1} = \sum {_{X < n \leqslant 2X}{a_g}\left( n \right)e\left( {\alpha {n^\beta }} \right)}\) and prove that S 1 has an asymptotic formula when β = 1/2 and α is close to \(\pm 2\sqrt {q/D}\) for positive integer qX/4 and X sufficiently large. And when 0 < β < 1 and α, β fail to meet the above condition, we obtain upper bounds of S 1. We also consider the sum \({S_2} = \sum {_{n > 0}{a_g}\left( n \right)e\left( {\alpha {n^\beta }} \right)\phi \left( {n/X} \right)}\) with ø(x) ∈ C c (0,+∞) and prove that S 2 has better upper bounds than S 1 at some special α and β.  相似文献   

13.
We consider the problem to synthesize a stabilizing control u synthesis for systems \(\frac{{dx}}{{dt}} = Ax + Bu\) where A ∈ ?n×n and B ∈ ?n×m, while the elements αi,j(·) of the matrix A are uniformly bounded nonanticipatory functionals of arbitrary nature. If the system is continuous, then the elements of the matrix B are continuous and uniformly bounded functionals as well. If the system is pulse-modulated, then the elements of the matrix B are differentiable uniformly bounded functions of time. It is assumed that k isolated uniformly bounded elements \({\alpha _{{i_l},{j_l}}}\left( \cdot \right)\) satisfying the condition \(\mathop {\inf }\limits_{\left( \cdot \right)} \left| {{\alpha _{{i_l},{j_l}}}\left( \cdot \right)} \right|{\alpha _ - } > 0,\quad l \in \overline {1,k}\) are located above the main diagonal of the matrix A(·), where G k is the set of all isolated elements of the system, J1 is the set of indices of rows of matrix A(·) containing isolated elements, and J2 is the set of indices of its rows free of isolated elements. It is assumed that other elements located above the main diagonal are sufficiently small provided that their row indices belong to J1, i.e., \(\mathop {\sup }\limits_{\left( \cdot \right)} \left| {{\alpha _{i,j}}\left( \cdot \right)} \right| < \delta ,\quad {\alpha _{i,j}} \notin {G_k},\quad i \in {J_1},\quad j > i\). All other elements located above the main diagonal are uniformly bounded. The relation u = S(·)x is satisfied in the continuous case, while the relation u = ξ(t) is satisfied in the pulse-modulated case; here the components of the vector ξ are outputs of synchronous pulse elements. Constructing a special quadratic Lyapunov function, one can determine a matrix S(·) such that the closed system becomes globally exponentially stable in the continuous case. In the pulse-modulated case, input pulses are synthesized such that the system becomes globally asymptotically stable.  相似文献   

14.
Given \({\mathbb Z}\)-graded rings A and B, we ask when the graded module categories gr-A and gr-B are equivalent. Using \({\mathbb Z}\)-algebras, we relate the Morita-type results of Áhn-Márki and del Río to the twisting systems introduced by Zhang, and prove, for example: Theorem If A and B are \({\mathbb Z}\) -graded rings, then: (1) A is isomorphic to a Zhang twist of B if and only if the \({\mathbb Z}\) -algebras \(\overline{A} = \bigoplus_{i,j \in {\mathbb Z}} A_{j-i}\) and \(\overline{B} = \bigoplus_{i,j \in {\mathbb Z}} B_{j-i}\) are isomorphic. (2) If A and B are connected graded with A 1?≠?0, then gr-A???gr-?B if and only if \(\overline{A}\) and \( \overline{B}\) are isomorphic. This simplifies and extends Zhang’s results.  相似文献   

15.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

16.
We find the greatest value α 1 and α 2, and the least values β 1 and β 2, such that the double inequalities α 1 S(a,b)?+?(1???α 1) A(a,b)?T(a,b)?β 1 S(a,b)?+?(1???β 1) A(a,b) and \(S^{\alpha_{2}}(a,b)A^{1-\alpha_{2}}(a,b)< T(a,b)< S^{\beta_{2}}(a,b)A^{1-\beta_{2}}(a,b)\) hold for all a,b?>?0 with a?≠?b. As applications, we get two new bounds for the complete elliptic integral of the second kind in terms of elementary functions. Here, S(a,b)?=?[(a 2?+?b 2)/2]1/2, A(a,b)?=?(a?+?b)/2, and \(T(a,b)=\frac{2}{\pi}\int\limits_{0}^{{\pi}/{2}}\sqrt{a^2{\cos^2{\theta}}+b^2{\sin^2{\theta}}}{\rm d}\theta\) denote the root-square, arithmetic, and Toader means of two positive numbers a and b, respectively.  相似文献   

17.
Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family
$\mathcal{F}\left( {k,q} \right) = \left\{ {K \subseteq \left[ n \right]:\left| K \right| \equiv k(mod q)} \right\}$
We study certain inclusion matrices attached to F(k,q) over the field\(\mathbb{F}_p \). We show that if l≤q?1 and 2ln then
$rank_{\mathbb{F}_p } I(\mathcal{F}(k,q),\left( {\begin{array}{*{20}c} {\left[ n \right]} \\ { \leqslant \ell } \\ \end{array} } \right)) \leqslant \left( {\begin{array}{*{20}c} n \\ \ell \\ \end{array} } \right)$
This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.  相似文献   

18.
In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation,
$$\begin{aligned} x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}} \end{aligned}$$
where abAB are all positive real numbers, \(k \ge 1\) is a positive integer, and the initial conditions \(x_{-k},x_{-k+1},...,x_{0}\) are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotically stable under the condition \(a+b \le A\), and the unique positive solution is also globally asymptotically stable under the condition \(a-b \le A \le a+b\). By the end, we study the global stability of such an equation through numerically solved examples.
  相似文献   

19.
We study the well-posedness of the third-order degenerate differential equation \(\left( {{P_3}} \right):\alpha {\left( {Mu} \right)^{\prime \prime \prime }}\left( t \right) + {\left( {Mu} \right)^{\prime \prime }}\left( t \right) = \beta Au\left( t \right) + f\left( t \right)\), (t ∈ [0, 2p]) with periodic boundary conditions \(Mu\left( 0 \right) = Mu\left( {2\pi } \right),\;Mu'\left( 0 \right) = Mu'\left( {2\pi } \right),\;Mu''\left( 0 \right) = Mu''\left( {2\pi } \right)\), in periodic Lebesgue–Bochner spaces Lp(T,X), periodic Besov spaces Bp,qs(T,X) and periodic Triebel–Lizorkin spaces Fp,qs(T,X), where A, B and M are closed linear operators on a Banach space X satisfying D(A) \( \cap \)D(B) ? D(M) and α, β, γ ∈ R. Using known operator-valued Fourier multiplier theorems, we completely characterize the well-posedness of (P3) in the above three function spaces.  相似文献   

20.
Linear complexity and k-error linear complexity are the important measures for sequences in stream ciphers. This paper discusses the asymptotic behavior of the normalized k-error linear complexity \({L_{n,k}(\underline{s})/n}\) of random binary sequences \({\underline{s}}\) , which is based on one of Niederreiter’s open problems. For k = n θ, where 0 ≤ θ ≤ 1/2 is a fixed ratio, the lower and upper bounds on accumulation points of \({L_{n,k}(\underline{s})/n}\) are derived, which holds with probability 1. On the other hand, for any fixed k it is shown that \({\lim_{n\rightarrow\infty} L_{n,k}(\underline{s})/n = 1/2}\) holds with probability 1. The asymptotic bounds on the expected value of normalized k-error linear complexity of binary sequences are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号