首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Spin states are studied in the tomographic-probability representation. The standard probability distribution of spin projection onto a direction in space is used instead of the spinor or the density matrix to identify the quantum state. The Shannon entropy and information are associated with the spin tomographic probability. A short review of the probability-theory notions is presented. Analysis of tomographic entropy and tomographic information for the Werner state is considered. The probability representation is used to describe a spin-3/2 particle and two qubits. The connection of tomographic entropy with the von Neumann entropy is discussed.  相似文献   

2.
Shannon entropy and information are applied to study the properties of quantum states of a system in the probability representation of quantum mechanics. Examples of spin states and mixed Gaussian states of the two-mode system are considered. The relationship between the new entropy and the von Neumann entropy is reviewed. Two tomographic maps are considered within the framework of the star-product quantization. The explicit expression of tomographic entropy associated with photon-number tomogram of the two-mode state of photons is obtained in terms of Hermite polynomials of four variables. Based on a contribution to the International Conference “New Trends in Quantum Mechanics. Fundamental Aspects and Applications” (Palermo, Italy, November 2005).  相似文献   

3.
This study presents the Shannon and Renyi information entropy for both position and momentum space and the Fisher information for the position-dependent mass Schrödinger equation with the Frost-Musulin potential. The analysis of the quantum mechanical probability has been obtained via the Fisher information. The variance information of this potential is equally computed. This controls both the chemical properties and physical properties of some of the molecular systems. We have observed the behaviour of the Shannon entropy. Renyi entropy, Fisher information and variance with the quantum number n respectively.  相似文献   

4.
5.
量子环中量子比特的声子效应   总被引:3,自引:0,他引:3       下载免费PDF全文
姜福仕  赵翠兰 《物理学报》2009,58(10):6786-6790
在量子环中电子与体纵光学声子强耦合的情况下,通过求解能量本征方程,得出了电子的基态和第一激发态的本征能量及其波函数,进而以电子-声子系的基态与第一激发态构造了一个量子比特.数值计算结果表明量子比特内电子的空间概率密度分布随时间和空间角坐标作周期性振荡,且振荡周期随耦合强度的增大而减小,说明声子将导致量子比特相干性降低;还表明振荡周期随量子环内径(或外径)的增大而增大,因此适当改变量子环的尺度,可以提高量子比特的相干性. 关键词: 量子环 量子信息 量子比特  相似文献   

6.
Following recent studies concerning the use of information theory in electronic structure theory of atomic and molecular systems, an analytical relationship between Onicescu information energy and densities of Shannon entropy and the two forms of the Fisher information has been presented. The established proof must be viewed in the light of the exponentially decaying nature of the asymptotic density of atoms and molecules.  相似文献   

7.
刘云飞  肖景林 《物理学报》2008,57(6):3324-3327
在一个抛物量子点中,以激子的真空态和基态作为量子比特(qubit),采用求密度矩阵元的方法,计算了由形变势下声学声子引发的激子量子比特纯退相干.找到了激子量子比特纯退相干因子对时间、温度和量子点受限长度的依赖关系.研究发现,激子量子比特的退相干因子在2.5ps的时间范围内随时间的增加而迅速增加,其纯退相干时间在ps量级;在温度即使为绝对温度0K时由LA声子引发的退相干依然存在,在温度大于3K后退相干因子随温度的增大而开始迅速增大;并同时发现量子点受限长度对退相干因子有重要影响,激子越受限退相干越快.研究结果表明,对激子量子比特使用适当大小量子点,且保持环境低温,并采用低能超快光学操作可以有效地抑制声子对激子量子比特纯退相干的影响. 关键词: 量子点 量子信息 量子比特  相似文献   

8.
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fokker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dynamic entropy density and dynamic information density and the nonlinear evolution equations of Boltzmann dynamic entropy density and dynamic information density, that describe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic information densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and information have been combined with the state and its law of motion of the systems. Furthermore we presented the formulas of two kinds of entropy production rates and information dissipation rates, the expressions of two kinds of drift information flows and diffusion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy production rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel capacities reflecting the dynamic dissipation characteristics in the transmission processes, which change into their maximum—the present static mutual information and static channel capacity under the limit case where the proportion of channel length to information transmission rate approaches to zero. All these unified and rigorous theoretical formulas and results are derived from the evolution equations of dynamic information and dynamic entropy without adding any extra assumption. In this review, we give an overview on the above main ideas, methods and results, and discuss the similarity and difference between two kinds of dynamic statistical information theories.  相似文献   

9.
The influence of electric field on a parabolic quantum dot qubit   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper calculates the time evolution of the quantum mechanical state of an electron by using variational method of Pekar type on the condition of electric--LO-phonon strong coupling in a parabolic quantum dot. It obtains the eigenenergies of the ground state and the first-excited state, the eigenfunctions of the ground state and the first-excited state This system in a quantum dot may be employed as a two-level quantum system qubit. The superposition state electron density oscillates in the quantum dot with a period when the electron is in the superposition state of the ground and the first-excited state. It studies the influence of the electric field on the eigenenergies of the ground state, the first-excited state and the period of oscillation at the different electron--LO-phonon coupling constant and the different confinement length.  相似文献   

10.
抛物线性限制势量子点量子比特及其光学声子效应   总被引:10,自引:0,他引:10       下载免费PDF全文
王子武  肖景林 《物理学报》2007,56(2):678-682
在抛物量子点中电子与体纵光学声子强耦合的条件下,应用Peaker变分方法得出了电子的基态和第一激发态的本征能量及基态和第一激发态本征波函数.量子点中这样的二能级体系可作为一个量子比特.当电子处于基态和第一激发态的叠加态时,计算出电子在空间的概率分布作周期性振荡.并且得出了振荡周期随受限长度及耦合强度的变化关系. 关键词: 量子点 量子信息 量子比特  相似文献   

11.
We analyze the functioning of Gibbs-type entropy functionals in the time domain, with emphasis on Shannon and Kullback-Leibler entropies of time-dependent continuous probability distributions. The Shannon entropy validity is extended to probability distributions inferred from L 2(R n ) quantum wave packets. In contrast to the von Neumann entropy which simply vanishes on pure states, the differential entropy quantifies the degree of probability (de)localization and its time development. The associated dynamics of the Fisher information functional quantifies nontrivial power transfer processes in the mean, both in dissipative and quantum mechanical cases. PACS NUMBERS: 05.45.+b, 02.50.-r, 03.65.Ta, 03.67.-a  相似文献   

12.
在量子环中电子与体纵光学声子强耦合的情况下,通过求解能量本征方程,得出了电子的基态和第一激发态的本征能量及其波函数,进而以电子-声子体系的基态与第一激发态构造一个量子比特.结果讨论了消相干时间与耦合强度,色散系数以及量子环内径、外径的变化关系.  相似文献   

13.
We investigated the dynamics of particulate matter data, recorded in Tito, a small industrial area of southern Italy. The analysis of these signals was performed using the Fisher information measure (FIM), which is a powerful tool for investigating complex and nonstationary signals, and the Shannon entropy, which is a well-known tool for investigating the degree of disorder in dynamical systems. Our results point to an increase of disorder and complexity from fine to coarse particulates.  相似文献   

14.
Considering two atomic qubits initially in Bell states, we send one qubit into a vacuum cavity with two-photon resonance and leave the other one outside. Using quantum information entropy squeezing theory, the time evolutions of the entropy squeezing factor of the atomic qubit inside the cavity are discussed for two cases, i.e., before and after rotation and measurement of the atomic qubit outside the cavity. It is shown that the atomic qubit inside the cavity has no entropy squeezing phenomenon and is always in a decoherent state before the operating atomic qubit outside the cavity. However,the periodical entropy squeezing phenomenon emerges and the optimal entropy squeezing state can be prepared for the atomic qubit inside the cavity by adjusting the rotation angle, choosing the interaction time between the atomic qubit and the cavity, controlling the probability amplitudes of subsystem states. Its physical essence is cutting the entanglement between the atomic qubit and its environment, causing the atomic qubit inside the cavity to change from the initial decoherent state into maximum coherent superposition state, which is a possible way of recovering the coherence of a single atomic qubit in the noise environment.  相似文献   

15.
We share a small connection between information theory, algebra, and topology—namely, a correspondence between Shannon entropy and derivations of the operad of topological simplices. We begin with a brief review of operads and their representations with topological simplices and the real line as the main example. We then give a general definition for a derivation of an operad in any category with values in an abelian bimodule over the operad. The main result is that Shannon entropy defines a derivation of the operad of topological simplices, and that for every derivation of this operad there exists a point at which it is given by a constant multiple of Shannon entropy. We show this is compatible with, and relies heavily on, a well-known characterization of entropy given by Faddeev in 1956 and a recent variation given by Leinster.  相似文献   

16.
Information switching and swapping seem to be fundamental elements of quantum communication protocols. Another crucial issue is the presence of entanglement and its level in inspected quantum systems. In this article, a formal definition of the operation of the swapping local quantum information and its existence proof, together with some elementary properties analysed through the prism of the concept of the entropy, are presented. As an example of the local information swapping usage, we demonstrate a certain realisation of the quantum switch. Entanglement levels, during the work of the switch, are calculated with the Negativity measure and a separability criterion based on the von Neumann entropy, spectral decomposition and Schmidt decomposition. Results of numerical experiments, during which the entanglement levels are estimated for systems under consideration with and without distortions, are presented. The noise is generated by the Dzyaloshinskii-Moriya interaction and the intrinsic decoherence is modelled by the Milburn equation. This work contains a switch realisation in a circuit form—built out of elementary quantum gates, and a scheme of the circuit which estimates levels of entanglement during the switch’s operating.  相似文献   

17.
There is no generally accepted definition for conditional Tsallis entropy. The standard definition of (unconditional) Tsallis entropy depends on a parameter α that converges to the Shannon entropy as α approaches 1. In this paper, we describe three proposed definitions of conditional Tsallis entropy suggested in the literature—their properties are studied and their values, as a function of α, are compared. We also consider another natural proposal for conditional Tsallis entropy and compare it with the existing ones. Lastly, we present an online tool to compute the four conditional Tsallis entropies, given the probability distributions and the value of the parameter α.  相似文献   

18.
The probability-representation entropy (tomographic entropy) of an arbitrary quantum state is introduced. Using the properties of the spin tomogram as the standard probability-distribution function, the tomographic entropy notion is discussed. The relation of tomographic entropy to Shannon entropy and von Neumann entropy is elucidated.  相似文献   

19.
This paper models a translation for base-2 pseudorandom number generators (PRNGs) to mixed-radix uses such as card shuffling. In particular, we explore a shuffler algorithm that relies on a sequence of uniformly distributed random inputs from a mixed-radix domain to implement a Fisher–Yates shuffle that calls for inputs from a base-2 PRNG. Entropy is lost through this mixed-radix conversion, which is assumed to be surjective mapping from a relatively large domain of size 2J to a set of arbitrary size n. Previous research evaluated the Shannon entropy loss of a similar mapping process, but this previous bound ignored the mixed-radix component of the original formulation, focusing only on a fixed n value. In this paper, we calculate a more precise formula that takes into account a variable target domain radix, n, and further derives a tighter bound on the Shannon entropy loss of the surjective map, while demonstrating monotonicity in a decrease in entropy loss based on increased size J of the source domain 2J. Lastly, this formulation is used to specify the optimal parameters to simulate a card-shuffling algorithm with different test PRNGs, validating a concrete use case with quantifiable deviations from maximal entropy, making it suitable to low-power implementation in a casino.  相似文献   

20.
吴超  方卯发  肖兴  李艳玲  曹帅 《中国物理 B》2011,20(2):20305-020305
A scheme is proposed where two superconducting qubits driven by a classical field interacting separately with two distant LC circuits connected by another LC circuit through mutual inductance,are used for implementing quantum gates.By using dressed states,quantum state transfer and quantum entangling gate can be implemented.With the help of the time-dependent electromagnetic field,any two dressed qubits can be selectively coupled to the data bus (the last LC circuit),then quantum state can be transferred from one dressed qubit to another and multi-mode entangled state can also be formed.As a result,the promising perspectives for quantum information processing of mesoscopic superconducting qubits are obtained and the distributed and scalable quantum computation can be implemented in this scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号