首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a greedy heuristic and two local search algorithms, 1-opt local search and k-opt local search, are proposed for the unconstrained binary quadratic programming problem (BQP). These heuristics are well suited for the incorporation into meta-heuristics such as evolutionary algorithms. Their performance is compared for 115 problem instances. All methods are capable of producing high quality solutions in short time. In particular, the greedy heuristic is able to find near optimum solutions a few percent below the best-known solutions, and the local search procedures are sufficient to find the best-known solutions of all problem instances with n 100. The k-opt local searches even find the best-known solutions for all problems of size n 250 and for 11 out of 15 instances of size n = 500 in all runs. For larger problems (n = 500, 1000, 2500), the heuristics appear to be capable of finding near optimum solutions quickly. Therefore, the proposed heuristics—especially the k-opt local search—offer a great potential for the incorporation in more sophisticated meta-heuristics.  相似文献   

2.
This paper deals with the one-machine dynamic total completion time scheduling problem. This problem is known to be NP-hard in the strong sense. A polynomial time heuristic algorithm is proposed which applies the recently introduced Recovering Beam Search (RBS) approach. The algorithm is based on a beam search procedure with unitary beam width and includes a recovering subroutine that allows to overcome wrong decisions taken at higher levels of the beam search tree. It is shown that the total number of considered nodes is bounded by n where n is the jobsize. The proposed algorithm is able to solve in very short CPU time problems with up to 500 jobs outperforming the best state of the art heuristics.  相似文献   

3.
For hard optimization problems, it is difficult to design heuristic algorithms which exhibit uniformly superior performance for all problem instances. As a result it becomes necessary to tailor the algorithms based on the problem instance. In this paper, we introduce the use of a cooperative problem solving team of heuristics that evolves algorithms for a given problem instance. The efficacy of this method is examined by solving six difficult instances of a bicriteria sparse multiple knapsack problem. Results indicate that such tailored algorithms uniformly improve solutions as compared to using predesigned heuristic algorithms.  相似文献   

4.
We consider the problem of minimizing the sum of completion times in a two-machine permutation flowshop subject to setup times. We propose a new priority rule, several constructive heuristics, local search procedures, as well as an effective multiple crossover genetic algorithm. Computational experiments carried out on a large set of randomly generated instances provide evidence that a constructive heuristic based on newly derived priority rule dominates all the proposed constructive heuristics. More specifically, we show that one of our proposed constructive heuristics outperforms the best constructive heuristic in the literature in terms of both error and computational time. Furthermore, we show that one of our proposed local search-based heuristics outperforms the best local search heuristic in the literature in terms of again both error and computational time. We also show that, in terms of quality-to-CPU time ratio, the multiple crossover genetic algorithm performs consistently well.  相似文献   

5.
This paper discusses solution techniques for the morning commute problem that is formulated as a discrete variational inequality (VI). Various heuristics have been proposed to solve this problem, mostly because the analytical properties of the path travel time function have not yet been well understood. Two groups of “non-heuristic” algorithms for general VIs, namely projection-type algorithms and ascent direction algorithms, were examined. In particular, a new ascent direction method is introduced and implemented with a heuristic line search procedure. The performance of these algorithms are compared on simple instances of the morning commute problem. The implications of numerical results are discussed.  相似文献   

6.
In this paper, we consider a parallel machine scheduling problem in which machines have a limited workload capacity and jobs have deadlines and release dates. The problem is motivated by the operation of energy storage management systems for microgrids under emergency conditions and generalizes some problems that have already been studied in the literature for their theoretical value. In this work, we propose heuristic and exact algorithms to solve the problem. The heuristics are adaptations of classical bin packing heuristics in which additional conditions on the feasibility of a solution are imposed, whereas the exact method is a branch-and-price approach. The results show that the branch-and-price approach is able to optimally solve random instances with up to 250 jobs within a time limit of one hour, while the heuristic procedures provide near optimal solution within reduced running times. Finally, we also provide additional complexity results for a special case of the problem.  相似文献   

7.
In the last few decades, several effective algorithms for solving the resource-constrained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heuristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure combines elements from scatter search, a generic population-based evolutionary search method, and from a recently introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with electromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics.  相似文献   

8.
When the processing times of jobs are controllable, selected processing times affect both the manufacturing cost and the scheduling performance. A well known example for such a case that this paper specifically deals with is the turning operation on a CNC machine. Manufacturing cost of a turning operation is a nonlinear convex function of its processing time. In this paper, we deal with making optimal machine-job assignments and processing time decisions so as to minimize total manufacturing cost while the makespan being upper bounded by a known value, denoted as ?-constraint approach for a bicriteria problem. We then give optimality properties for the resulting single criterion problem. We provide alternative methods to compute cost lower bounds for partial schedules, which are used in developing an exact (branch and bound) algorithm. For the cases where the exact algorithm is not efficient in terms of computation time, we present a recovering beam search algorithm equipped with an improvement search procedure. In order to find improving search directions, the improvement search algorithm uses the proposed cost bounding properties. Computational results show that our lower bounding methods in branch and bound algorithm achieve a significant reduction in the search tree size that we need to traverse. Also, our recovering beam search and improvement search heuristics achieve solutions within 1% of the optimum on the average while they spent much less computational effort than the exact algorithm.  相似文献   

9.
This paper presents two new heuristics for the flowshop scheduling problem with sequence-dependent setup times (SDSTs) and makespan minimization objective. The first is an extension of a procedure that has been very successful for the general flowshop scheduling problem. The other is a greedy randomized adaptive search procedure (GRASP) which is a technique that has achieved good results on a variety of combinatorial optimization problems. Both heuristics are compared to a previously proposed algorithm based on the traveling salesman problem (TSP). In addition, local search procedures are developed and adapted to each of the heuristics. A two-phase lower bounding scheme is presented as well. The first phase finds a lower bound based on the assignment relaxation for the asymmetric TSP. In phase two, attempts are made to improve the bound by inserting idle time. All procedures are compared for two different classes of randomly generated instances. In the first case where setup times are an order of magnitude smaller than the processing times, the new approaches prove superior to the TSP-based heuristic; for the case where both processing and setup times are identically distributed, the TSP-based heuristic outperforms the proposed procedures.  相似文献   

10.
This paper analyses the total tardiness minimization in a flowshop with multiple processors at each stage. While there is considerable research to minimize the makespan, very little work is reported on minimizing the total tardiness for this problem. This research focuses on heuristic methods that consider this environment as a series of parallel machine problems. New dispatching rules are introduced. One of the proposed rules is able to deal with jobs that will come afterwards and not only the available jobs at the decision time. Dispatching rules are also associated with classical (forward and backward) and new list scheduling algorithms. A special scheduling algorithm able to deal with idle times is proposed. Computational experiments in a set of 4,320 literature instances show that the developed heuristics are competitive and outperforms their classical counterparts.  相似文献   

11.
同时加工排序问题的分支定界法和启发式算法   总被引:2,自引:0,他引:2  
同时加工机器或者称为批加工机器是可以同时加工多个工件的机器.本文研究使带权总完工时间为最小的同时加工排序问题1|B|∑wjGj.这个问题的计算复杂性还没有解决.我们给出这个问题的精确解法——分支定界法和几个启发式算法,并且用较多实例对启发式算法的性能进行了比较.  相似文献   

12.
In this paper we consider the two-dimensional (2D) rectangular packing problem, where a fixed set of items have to be allocated on a single object. Two heuristics, which belong to the class of packing procedures that preserve bottom-left (BL) stability, are hybridised with three meta-heuristic algorithms (genetic algorithms (GA), simulated annealing (SA), naı̈ve evolution (NE)) and local search heuristic (hill-climbing). This study compares the hybrid algorithms in terms of solution quality and computation time on a number of packing problems of different size. In order to show the effectiveness of the design of the different algorithms, their performance is compared to random search (RS) and heuristic packing routines.  相似文献   

13.
In this paper, we develop new heuristic procedures for the maximum diversity problem (MDP). This NP-hard problem has a significant number of practical applications such as environmental balance, telecommunication services or genetic engineering. The proposed algorithm is based on the tabu search methodology and incorporates memory structures for both construction and improvement. Although proposed in seminal tabu search papers, memory-based constructions have often been implemented in naïve ways that disregard important elements of the fundamental tabu search proposals. We will compare our tabu search construction with a memory-less design and with previous algorithms recently developed for this problem. The constructive method can be coupled with a local search procedure or a short-term tabu search for improved outcomes. Extensive computational experiments with medium and large instances show that the proposed procedure outperforms the best heuristics reported in the literature within short computational times.  相似文献   

14.
Resource-constrained project scheduling under a net present value objective attracts growing interest. Because this is an NP-hard problem, it is unlikely that optimum solutions can be computed for large instances within reasonable computation time. Thus, heuristics have become a popular research field. Up to now, however, upper bounds are not well researched. Therefore, most researchers evaluate their heuristics on the basis of a best known lower bound, but it is unclear how good the performance really is. With this contribution we close this gap and derive tight upper bounds on the basis of a Lagrangian relaxation of the resource constraints. We also use this approach as a basis for a heuristic and show that our heuristic as well as the cash flow weight heuristic proposed by Baroum and Patterson yield solutions very close to the optimum result. Furthermore, we discuss the proper choice of a test-bed and emphasize that discount rates must be carefully chosen to give realistic instances.  相似文献   

15.
Number partitioning is a classical NP-hard combinatorial optimization problem, whose solution is challenging for both exact and approximative methods. This work presents a new algorithm for number partitioning, based on ideas drawn from tree search, breadth first search, and beam search. A new set of benchmark instances for this problem is also proposed. The behavior of the new method on this and other testbeds is analyzed and compared to other well known heuristics and exact algorithms.  相似文献   

16.
This paper investigates the utility of introducing randomization as a means of boosting the performance of search heuristics. We introduce a particular approach to randomization, called Value-biased stochastic sampling (VBSS), which emphasizes the use of heuristic value in determining stochastic bias. We offer an empirical study of the performance of value-biased and rank-biased approaches to randomizing search heuristics. We also consider the use of these stochastic sampling techniques in conjunction with local hill-climbing. Finally, we contrast the performance of stochastic sampling search with more systematic search procedures as a means of amplifying the performance of search heuristics.  相似文献   

17.
We introduce a heuristic for the Multi-Resource Generalized Assignment Problem (MRGAP) based on the concepts of Very Large-Scale Neighborhood Search and Variable Neighborhood Search. The heuristic is a simplified version of the Very Large-Scale Variable Neighborhood Search for the Generalized Assignment Problem. Our algorithm can be viewed as a k-exchange heuristic; but unlike traditional k-exchange algorithms, we choose larger values of k resulting in neighborhoods of very large size with high probability. Searching this large neighborhood (approximately) amounts to solving a sequence of smaller MRGAPs either by exact algorithms or by heuristics. Computational results on benchmark test problems are presented. We obtained improved solutions for many instances compared to some of the best known heuristics for the MRGAP within reasonable running time. The central idea of our heuristic can be used to develop efficient heuristics for other hard combinatorial optimization problems as well.  相似文献   

18.
In this paper, we consider a modified shifting bottleneck heuristic for complex job shops. The considered job shop environment contains parallel batching machines, machines with sequence-dependent setup times and reentrant process flows. Semiconductor wafer fabrication facilities (Wafer Fabs) are typical examples for manufacturing systems with these characteristics. Our primary performance measure is total weighted tardiness (TWT). The shifting bottleneck heuristic uses a disjunctive graph to decompose the overall scheduling into scheduling problems for single tool groups. The scheduling algorithms for these scheduling problems are called subproblem solution procedures (SSPs). In previous research, only subproblem solution procedures based on dispatching rules have been considered. In this paper, we are interested in how much we can gain in terms of TWT if we apply more sophisticated subproblem solution procedures like genetic algorithms for parallel machine scheduling. We conduct simulation experiments in a dynamic job shop environment in order to assess the performance of the suggested subproblem solution procedures. It turns out that using near to optimal subproblem solution procedures leads in many situations to improved results compared to dispatching-based subproblem solution procedures.  相似文献   

19.
Starting from an algorithm recently proposed by Pullan and Hoos, we formulate and analyze iterated local search algorithms for the maximum clique problem. The basic components of such algorithms are a fast neighbourhood search (not based on node evaluation but on completely random selection) and simple, yet very effective, diversification techniques and restart rules. A detailed computational study is performed in order to identify strengths and weaknesses of the proposed algorithms and the role of the different components on several classes of instances. The tested algorithms are very fast and reliable: most of the DIMACS benchmark instances are solved within very short CPU times. For one of the hardest tests, a new putative optimum was discovered by one of our algorithms. Very good performances were also shown on recently proposed and more difficult instances. It is important to remark that the heuristics tested in this paper are basically parameter free (the appropriate value for the unique parameter is easily identified and was, in fact, the same value for all problem instances used in this paper).  相似文献   

20.
In this work we present a review and comparative evaluation of heuristics and metaheuristics for the well-known permutation flowshop problem with the makespan criterion. A number of reviews and evaluations have already been proposed. However, the evaluations do not include the latest heuristics available and there is still no comparison of metaheuristics. Furthermore, since no common benchmarks and computing platforms are used, the results cannot be generalised. We propose a comparison of 25 methods, ranging from the classical Johnson's algorithm or dispatching rules to the most recent metaheuristics, including tabu search, simulated annealing, genetic algorithms, iterated local search and hybrid techniques. For the evaluation we use the standard test of Taillard [Eur. J. Operation. Res. 64 (1993) 278] composed of 120 instances of different sizes. In the evaluations we use the experimental design approach to obtain valid conclusions on the effectiveness and efficiency of the different methods tested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号