首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work we are concerned with the Clarke–Wright savings method for the classical capacitated vehicle routing problem. This is an NP-hard problem and numerous heuristic solution methods have been proposed. They can be classified as the classical ones and metaheuristics. Recent developments have shown that classical heuristics do not compare with the best metaheuristic implementations. However, some of them are very fast and simple to implement. This explains the popularity of the Clarke–Wright savings method in practice and the motivation behind its enhancements. We follow this line of research and propose a new enhancement which differs from the previous ones in its saving criterion: Customer demands are considered in addition to distances. Based on the extensive computational experiments we can say that the new method is not only very fast but also very accurate.  相似文献   

2.
This paper introduces Empirically Adjusted Greedy Heuristics (EAGH), a procedure for designing greedy algorithms for a given combinatorial optimization problem and illustrates the way in which EAGH works with an application to minimize the makespan in the permutation flow-shop problem. The basic idea behind EAGH is that a greedy heuristic can be seen as a member of an infinite set of heuristics, this set being defined by a function that depends on several parameters. Each set of values of the parameters corresponds to a specific greedy heuristic. Then, the best element of the set, for a training set of instances of the problem, is found by applying a non-linear optimization algorithm to a function that measures the quality of the obtained solutions to the instances of the training set, and which depends on the parameters that characterize each specific algorithm. EAGH allows improving known heuristics or finding good new ones.  相似文献   

3.
Almost all heuristic optimization procedures require the presence of a well-tuned set of parameters. The tuning of these parameters is usually a critical issue and may entail intensive computational requirements. We propose a fast and effective approach composed of two distinct stages. In the first stage, a genetic algorithm is applied to a small subset of representative problems to determine a few robust parameter sets. In the second stage, these sets of parameters are the starting points for a fast local search procedure, able to more deeply investigate the space of parameter sets for each problem to be solved. This method is tested on a parametric version of the Clarke and Wright algorithm and the results are compared with an enumerative parameter-setting approach previously proposed in the literature. The results of our computational testing show that our new parameter-setting procedure produces results of the same quality as the enumerative approach, but requires much shorter computational time.  相似文献   

4.
郭放  杨珺  杨超 《运筹与管理》2018,27(9):33-44
电动汽车参与的物流配送服务需要统筹协调车辆路径、配送对象与换电策略。本文提出了考虑货物分类需求的电动汽车路径优化与换电策略问题,并建立了该问题的整数规划数学模型。其次,提出了基于禁忌搜索-改进节约算法的两阶段混合启发式算法MCWTS和一种四阶段启发式算法IGALNS。通过多组小规模算例验证了算法的有效性。随后,分别从运营成本、路径距离、换电策略以及混合运输线路等方面比较并分析了货物分类对运营策略的影响。实验结果表明,该模型可以在配送距离略有增加的情况下避免将不适宜混合运输的货物指派给同一车辆,达到降低货物运输损失提高顾客满意度的目的。最后,通过多组较大规模算例对两种启发式算法的有效性进行了比较。  相似文献   

5.
This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms the original one, and can produce good solutions when compared with the existing heuristics. These results seem to indicate that the enhanced heuristic is an alternative to solve the capacitated vehicle routing problem.  相似文献   

6.
本文提出一种带时间窗和容量约束的车辆路线问题(CVRPTW),并利用Tabu Search快速启式算法,针对Solomon提出的几个标准问题,快捷地得到了优良的数值结果。  相似文献   

7.

The vehicle routing problem (VRP) is a combinatorial optimization management problem that seeks the optimal set of routes traversed by a vehicle to deliver products to customers. A recognized problem in this domain is to serve ‘prioritized’ customers in the shortest possible time where customers with known demands are supplied by one or several depots. This problem is known as the Vehicle Routing with Prioritized Customers (VRPC). The purpose of this work is to present and compare two artificial intelligence-based novel methods that minimize the traveling distance of vehicles when moving cargo to prioritized customers. Various studies have been conducted regarding this topic; nevertheless, up to now, few studies used the Cuckoo Search-based hyper-heuristic. This paper modifies a classical mathematical model that represents the VRPC, implements and tests an evolutionary Cuckoo Search-based hyper-heuristic, and then compares the results with those of our proposed modified version of the Clarke Wright (CW) algorithm. In this modified version, the CW algorithm serves all customers per their preassigned priorities while covering the needed working hours. The results indicate that the solution selected by the Cuckoo Search-based hyper-heuristic outperformed the modified Clarke Wright algorithm while taking into consideration the customers’ priority and demands and the vehicle capacity.

  相似文献   

8.
The well-known vehicle routing problem (VRP) has been studied in depth over the last decades. Nowadays, generalizations of VRP have been developed for tactical or strategic decision levels of companies but not both. The tactical extension or periodic VRP (PVRP) plans a set of trips over a multiperiod horizon, subject to frequency constraints. The strategic extension is motivated by interdependent depot location and routing decisions in most distribution systems. Low-quality solutions are obtained if depots are located first, regardless of the future routes. In the location-routing problem (LRP), location and routing decisions are tackled simultaneously. Here for the first time, except for some conference papers, the goal is to combine the PVRP and LRP into an even more realistic problem covering all decision levels: the periodic LRP or PLRP. A hybrid evolutionary algorithm is proposed to solve large size instances of the PLRP. First, an individual representing an assignment of customers to combinations of visit days is randomly generated. The evolution operates through an Evolutionary Local Search (ELS) on visit day assignments. The algorithm is hybridized with a heuristic based on the Randomized Extended Clarke and Wright Algorithm (RECWA) to create feasible solutions and stops when a given number of iterations is reached. The method is evaluated over three sets of instances, and solutions are compared to the literature on particular cases such as one-day horizon (LRP) or one depot (PVRP). This metaheuristic outperforms the previous methods for the PLRP.  相似文献   

9.
This paper addresses multi-depot location arc routing problems with vehicle capacity constraints. Two mixed integer programming models are presented for single and multi-depot problems. Relaxing these formulations leads to other integer programming models whose solutions provide good lower bounds for the total cost. A powerful insertion heuristic has been developed for solving the underlying capacitated arc routing problem. This heuristic is used together with a novel location–allocation heuristic to solve the problem within a simulated annealing framework. Extensive computational results demonstrate that the proposed algorithm can find high quality solutions. We also show that the potential cost saving resulting from adding location decisions to the capacitated arc routing problem is significant.  相似文献   

10.
This paper describes a heuristic for the Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW). Unique to this problem are the so-called time windows, i.e. time slots during which the vehicle must arrive at the customer to deliver the goods. The heuristic builds on the well-known Clarke and Wright Savings method with an additional criterion that models an intuitive view of time influence on route building. Experiments show that this added criterion yields significantly better solutions to the VRSPTW than pure routing heuristics, and also compares favorably to other new heuristics, developed specifically for the VRSPTW.  相似文献   

11.
As shown in recent researches, the costs in distribution systems may be excessive if routes are ignored when locating depots. The location routing problem (LRP) overcomes this drawback by simultaneously tackling location and routing decisions. This paper presents a new metaheuristic to solve the LRP with capacitated routes and depots. A first phase executes a GRASP, based on an extended and randomized version of Clarke and Wright algorithm. This phase is implemented with a learning process on the choice of depots. In a second phase, new solutions are generated by a post-optimization using a path relinking. The method is evaluated on sets of randomly generated instances, and compared to other heuristics and a lower bound. Solutions are obtained in a reasonable amount of time for such a strategic problem. Furthermore, the algorithm is competitive with a metaheuristic published for the case of uncapacitated depots.  相似文献   

12.
An extension of the capacitated vehicle routing problem is studied in this paper. In this version the difference between the individual route lengths is minimized simultaneously with the total length. The drivers’ workload and perhaps, income, may be affected by the route lengths; so adding this objective makes the problem closer to real-life than the original, single-objective problem. A heuristic based on GRASP is used to obtain an approximation of the Pareto set. The proposed heuristic is tested on instances from the literature, obtaining good approximations of the Pareto set.  相似文献   

13.
This work deals with a new combinatorial optimization problem, the two-dimensional loading capacitated vehicle routing problem with time windows which is a realistic extension of the well known vehicle routing problem. The studied problem consists in determining vehicle trips to deliver rectangular objects to a set of customers with known time windows, using a homogeneous fleet of vehicles, while ensuring a feasible loading of each vehicle used. Since it includes NP-hard routing and packing sub-problems, six heuristics are firstly designed to quickly compute good solutions for realistic instances. They are obtained by combining algorithms for the vehicle routing problem with time windows with heuristics for packing rectangles. Then, a Memetic algorithm is developed to improve the heuristic solutions. The quality and the efficiency of the proposed heuristics and metaheuristic are evaluated by adding time windows to a set of 144 instances with 15–255 customers and 15–786 items, designed by Iori et al. (Transport Sci 41:253–264, 2007) for the case without time windows.  相似文献   

14.
The capacitated $p$ -median problem (CPMP) is one of the well-known facility-location problems. The objective of the problem is to minimize total cost of locating a set of capacitated service points and allocating a set of demand points to the located service points, while the total allocated demand for each service point is not be greater than its capacity limit. This paper presents an efficient heuristic algorithm based on the local branching and relaxation induced neighborhood search methods for the CPMP. The proposed algorithm is a heuristic technique that utilizes a general mixed integer programming solver to explore neighborhoods. The parameters of the proposed algorithm are tuned by design of experiments. The proposed method is tested on a large set of benchmark instances. The results show that the method outperforms the best method found in the literature.  相似文献   

15.
This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to find cost-effective solutions for this problem. In addition, the proposed heuristics is used to solve some instances of the capacitated lot sizing problem with parallel machines. The results of the computational tests show that the proposed heuristics outperform other heuristics previously described in the literature. The results are confirmed by statistical tests.  相似文献   

16.
Facility-location problems have several applications, such as telecommunications, industrial transportation and distribution. One of the most well-known facility-location problems is the p-median problem. This work addresses an application of the capacitated p-median problem to a real-world problem. We propose a genetic algorithm (GA) to solve the capacitated p-median problem. The proposed GA uses not only conventional genetic operators, but also a new heuristic “hypermutation” operator suggested in this work. The proposed GA is compared with a tabu search algorithm.  相似文献   

17.
This paper presents the SR-GCWS-CS probabilistic algorithm that combines Monte Carlo simulation with splitting techniques and the Clarke and Wright savings heuristic to find competitive quasi-optimal solutions to the Capacitated Vehicle Routing Problem (CVRP) in reasonable response times. The algorithm, which does not require complex fine-tuning processes, can be used as an alternative to other metaheuristics—such as Simulated Annealing, Tabu Search, Genetic Algorithms, Ant Colony Optimization or GRASP, which might be more difficult to implement and which might require non-trivial fine-tuning processes—when solving CVRP instances. As discussed in the paper, the probabilistic approach presented here aims to provide a relatively simple and yet flexible algorithm which benefits from: (a) the use of the geometric distribution to guide the random search process, and (b) efficient cache and splitting techniques that contribute to significantly reduce computational times. The algorithm is validated through a set of CVRP standard benchmarks and competitive results are obtained in all tested cases. Future work regarding the use of parallel programming to efficiently solve large-scale CVRP instances is discussed. Finally, it is important to notice that some of the principles of the approach presented here might serve as a base to develop similar algorithms for other routing and scheduling combinatorial problems.  相似文献   

18.
We consider an extension of the capacitated Vehicle Routing Problem (VRP), known as the Vehicle Routing Problem with Backhauls (VRPB), in which the set of customers is partitioned into two subsets: Linehaul and Backhaul customers. Each Linehaul customer requires the delivery of a given quantity of product from the depot, whereas a given quantity of product must be picked up from each Backhaul customer and transported to the depot. VRPB is known to be NP-hard in the strong sense, and many heuristic algorithms were proposed for the approximate solution of the problem with symmetric or Euclidean cost matrices. We present a cluster-first-route-second heuristic which uses a new clustering method and may also be used to solve problems with asymmetric cost matrix. The approach exploits the information of the normally infeasible VRPB solutions associated with a lower bound. The bound used is a Lagrangian relaxation previously proposed by the authors. The final set of feasible routes is built through a modified Traveling Salesman Problem (TSP) heuristic, and inter-route and intra-route arc exchanges. Extensive computational tests on symmetric and asymmetric instances from the literature show the effectiveness of the proposed approach.  相似文献   

19.
In the capacitated p-median problem (CPMP), a set of n customers is to be partitioned into p disjoint clusters, such that the total dissimilarity within each cluster is minimized subject to constraints on maximum cluster capacity. Dissimilarity of a cluster is the sum of the dissimilarities between each customer who belongs to the cluster and the median associated with the cluster. An effective variable neighbourhood search heuristic for this problem is proposed. The heuristic is characterized by the use of easily computed lower bounds to assess whether undertaking computationally expensive calculation of the worth of moves, within the neighbourhood search, is necessary. The small proportion of moves that need to be assessed fully are then evaluated by an exact solution of a relatively small subproblem. Computational results on five standard sets of benchmark problem instances show that the heuristic finds all the best-known solutions. For one instance, the previously best-known solution is improved, if only marginally.  相似文献   

20.
This is a summary of the main results presented in the author’s Ph.D thesis, available at http://prodhonc.free.fr/homepage. This thesis, written in French, was supervised by Christian Prins and Roberto Wolfler-Calvo, and defended on 16 October 2006 at the Université de Technologie de Troyes. Several new approaches are proposed to solve the capacitated location-routing problem (CLRP): heuristic, cooperative and exact methods. Their performances are tested on various kinds of instances with capacitated vehicles and capacitated or uncapacitated depots.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号