首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the truck and trailer routing problems (TTRPs) a fleet of trucks and trailers serves a set of customers. Some customers with accessibility constraints must be served just by truck, while others can be served either by truck or by a complete vehicle (a truck pulling a trailer). We propose a simple, yet effective, two-phase matheuristic that uses the routes of the local optima of a hybrid GRASP × ILS as columns in a set-partitioning formulation of the TTRP. Using this matheuristic we solved both the classical TTRP with fixed fleet and the new variant with unlimited fleet. This matheuristic outperforms state-of-the-art methods both in terms of solution quality and computing time. While the best variant of the matheuristic found new best-known solutions for several test instances from the literature, the fastest variant of the matheuristic achieved results of comparable quality to those of all previous method from the literature with an average speed-up of at least 2.5.  相似文献   

2.
This paper considers a transportation problem for moving empty or laden containers for a logistic company. Owing to the limited resource of its vehicles (trucks and trailers), the company often needs to sub-contract certain job orders to outsourced companies. A model for this truck and trailer vehicle routing problem (TTVRP) is first constructed in the paper. The solution to the TTVRP consists of finding a complete routing schedule for serving the jobs with minimum routing distance and number of trucks, subject to a number of constraints such as time windows and availability of trailers. To solve such a multi-objective and multi-modal combinatorial optimization problem, a hybrid multi-objective evolutionary algorithm (HMOEA) featured with specialized genetic operators, variable-length representation and local search heuristic is applied to find the Pareto optimal routing solutions for the TTVRP. Detailed analysis is performed to extract useful decision-making information from the multi-objective optimization results as well as to examine the correlations among different variables, such as the number of trucks and trailers, the trailer exchange points, and the utilization of trucks in the routing solutions. It has been shown that the HMOEA is effective in solving multi-objective combinatorial optimization problems, such as finding useful trade-off solutions for the TTVRP routing problem.  相似文献   

3.
We consider the problem of simultaneously selecting customers to be served by external carriers and routing a heterogeneous internal fleet. Very little attention was devoted to this problem. A recent paper proposed a heuristic solution procedure. Our paper shows that better results can be obtained by a simple method and corrects some erroneous results presented in the previous paper.  相似文献   

4.
The open vehicle routing problem (OVRP) differs from the classic vehicle routing problem (VRP) because the vehicles either are not required to return to the depot, or they have to return by revisiting the customers assigned to them in the reverse order. Therefore, the vehicle routes are not closed paths but open ones. A heuristic method for solving this new problem, based on a minimum spanning tree with penalties procedure, is presented. Computational results are provided.  相似文献   

5.
Transiated fromIssledovaniya po Prikladnoi Matematike, No. 18, 1992, pp. 38–48.  相似文献   

6.
We consider the Asymmetric Capacitated Vehicle Routing Problem (ACVRP[, a particular case of the standard asymmetric Vehicle Routing Problem arising when only the vehicle capacity constraints are imposed. ACVRP is known to be NP-hard and finds practical applications, e.g. in distribution and scheduling. In this paper we describe the extension to ACVRP of the two well-known Clarke-Wright and Fisher-Jaikumar heuristic algorithms. We also propose a new heuristic algorithm for ACVRP that, starting with an initial infeasible solution, determines the final set of vehicle routes through an insertion procedure as well as intea-route and inter-route arc exchanges. The initial infeasible solution is obtained by using the additive bounding procedures for ACVRP described by Fischetti, Toth and Vigo in 1992. Extensive computational results on several classes of randomly generated test problems involving up to 300 customers and on some real instances of distribution problems in urban areas, are presented. The results obtained show that the proposed approach favourably compares with previous algorithms from the literature.  相似文献   

7.
In this study, a heuristic free from parameter tuning is introduced to solve the vehicle routing problem (VRP) with two conflicting objectives. The problem which has been presented is the designing of optimal routes: minimizing both the number of vehicles and the maximum route length. This problem, even in the case of its single objective form, is NP-hard. The proposed self-tuning heuristic (STH) is based on local search and has two parameters which are updated dynamically throughout the search process. The most important advantage of the algorithm is the application convenience for the end-users. STH is tested on the instances of a multi-objective problem in school bus routing and classical vehicle routing. Computational experiments, when compared with the prior approaches proposed for the multi-objective routing of school buses problem, confirm the effectiveness of STH. STH also finds high-quality solutions for multi-objective VRPs.  相似文献   

8.
The Euclidean p-median problem is concerned with the decision of the locations for public service centres. Existing methods for the planar Euclidean p-median problems are capable of efficiently solving problems of relatively small scale. This paper proposes two new heuristic algorithms aiming at problems of large scale. Firstly, to reflect the different degrees of proximity to optimality, a new kind of local optimum called level-m optimum is defined. For a level-m optimum of a p-median problem, where m<p, each of its subsets containing m of the p partitions is a global optimum of the corresponding m-median subproblem. Starting from a conventional local optimum, the first new algorithm efficiently improves it to a level-2 optimum by applying an existing exact algorithm for solving the 2-median problem. The second new algorithm further improves it to a level-3 optimum by applying a new exact algorithm for solving the 3-median problem. Comparison based on experimental results confirms that the proposed algorithms are superior to the existing heuristics, especially in terms of solution quality.  相似文献   

9.
This paper describes a heuristic for the Vehicle Routing and Scheduling Problem with Time Windows (VRSPTW). Unique to this problem are the so-called time windows, i.e. time slots during which the vehicle must arrive at the customer to deliver the goods. The heuristic builds on the well-known Clarke and Wright Savings method with an additional criterion that models an intuitive view of time influence on route building. Experiments show that this added criterion yields significantly better solutions to the VRSPTW than pure routing heuristics, and also compares favorably to other new heuristics, developed specifically for the VRSPTW.  相似文献   

10.
The heterogeneous fleet vehicle routing problem is investigated using some adaptations of the variable neighborhood search (VNS). The initial solution is obtained by Dijkstra’s algorithm based on a cost network constructed by the sweep algorithm and the 2-opt. Our VNS algorithm uses several neighborhoods which are adapted for this problem. In addition, a number of local search methods together with a diversification procedure are used. Two VNS variants, which differ in the order the diversification and Dijkstra’s algorithm are used, are implemented. Both variants appear to be competitive and produce new best results when tested on the data sets from the literature. We also constructed larger data sets for which benchmarking results are provided for future comparison.  相似文献   

11.
In this paper, another version of the vehicle routing problem (VRP)—the open vehicle routing problem (OVRP) is studied, in which the vehicles are not required to return to the depot, but if they do, it must be by revisiting the customers assigned to them in the reverse order. By exploiting the special structure of this type of problem, we present a new tabu search heuristic for finding the routes that minimize two objectives while satisfying three constraints. The computational results are provided and compared with two other methods in the literature.  相似文献   

12.
Annals of Operations Research - In the double row layout problem, we wish to position n machines on two parallel rows in order to minimize the cost of material flow among machines. The problem is...  相似文献   

13.
In this paper we consider the problem of physically distributing finished goods from a central facility to geographically dispersed customers, which pose daily demands for items produced in the facility and act as sales points for consumers. The management of the facility is responsible for satisfying all demand, and promises deliveries to the customers within fixed time intervals that represent the earliest and latest times during the day that a delivery can take place. We formulate a comprehensive mathematical model to capture all aspects of the problem, and incorporate in the model all critical practical concerns such as vehicle capacity, delivery time intervals and all relevant costs. The model, which is a case of the vehicle routing problem with time windows, is solved using a new heuristic technique. Our solution method, which is based upon Atkinson's greedy look-ahead heuristic, enhances traditional vehicle routing approaches, and provides surprisingly good performance results with respect to a set of standard test problems from the literature. The approach is used to determine the vehicle fleet size and the daily route of each vehicle in an industrial example from the food industry. This actual problem, with approximately two thousand customers, is presented and solved by our heuristic, using an interface to a Geographical Information System to determine inter-customer and depot–customer distances. The results indicate that the method is well suited for determining the required number of vehicles and the delivery schedules on a daily basis, in real life applications.  相似文献   

14.
The vehicle routing problem with stochastic demands consists in designing transportation routes of minimal expected cost to satisfy a set of customers with random demands of known probability distributions. This paper proposes a simple yet effective heuristic approach that uses randomized heuristics for the traveling salesman problem, a tour partitioning procedure, and a set partitioning formulation to sample the solution space and find high-quality solutions for the problem. Computational experiments on benchmark instances from the literature show that the proposed approach is competitive with the state-of-the-art algorithm for the problem in terms of both accuracy and efficiency. In experiments conducted on a set of 40 instances, the proposed approach unveiled four new best-known solutions (BKSs) and matched another 24. For the remaining 12 instances, the heuristic reported average gaps with respect to the BKS ranging from 0.69 to 0.15 % depending on its configuration.  相似文献   

15.
In this paper, we introduce an improved Greedy Randomized Adaptive Search Procedure (GRASP) based heuristic for the multi-product multi-vehicle inventory routing problem (MMIRP). The inventory routing problem, which combines the vehicle-routing problem and the inventory control decisions, is one of the most important problems in combinatorial optimization field. To deal with the MMIRP, we develop a GRASP-based heuristic (GBH). Each GBH iteration consists of two sequential phases; the first phase is a Greedy Randomized Procedure, in which, the best tradeoff between the inventory holding cost and routing cost is looked. Then, in the second phase, as local search for the GRASP, we use the Tabu search (TS) meta-heuristic to improve the solution found in the first phase. The GBH two phases are repeated until some stopped criterion is met. Our proposed method is evaluated on two benchmark data sets, and successfully compared with two state-of-the-art algorithms.  相似文献   

16.
Correction to: Journal of the Operational Research Society (2005) 56, 267–274. doi:10.1057/palgrave.jors.2601817  相似文献   

17.
The open vehicle routing problem (VRP) is an immediate variant of the standard vehicle routing problem where the vehicle need not return to the depot after servicing its last customer. In this paper, we present results on an implementation of the attribute-based hill climber heuristic to the open VRP. The attribute-based hill climber heuristic is a parameter-free variant of the tabu search principle and has shown to be highly effective for the standard vehicle routing problem.  相似文献   

18.
We suggest an efficient route minimization heuristic for the vehicle routing problem with time windows. The heuristic is based on the ejection pool, powerful insertion and guided local search strategies. Experimental results on the Gehring and Homberger’s benchmarks demonstrate that our algorithm outperforms previous approaches and found 18 new best-known solutions.  相似文献   

19.
We present a mathematical formulation and a heuristic solution approach for the optimal planning of delivery routes in a multi-modal system combining truck and Unmanned Aerial Vehicle (UAV) operations. In this system, truck and UAV operations are synchronized, i.e., one or more UAVs travel on a truck, which serves as a mobile depot. Deliveries can be made by both UAVs and the truck. While the truck follows a multi-stop route, each UAV delivers a single shipment per dispatch. The presented optimization model minimizes the waiting time of customers in the system. The model determines the optimal allocation of customers to truck and UAVs, the optimal route sequence of the truck, and the optimal launch and reconvene locations of the UAVs along the truck route. We formulate the problem as a Mixed-Integer Linear Programming (MILP) model and conduct a bound analysis to gauge the maximum potential of the proposed system to reduce customer waiting time compared to a traditional truck-only delivery system. To be able to solve real-world problem size instances, we propose an efficient Truck and Drone Routing Algorithm (TDRA). The solution quality and computational performance of the mathematical model and the TDRA are compared together and with the truck-only model based on a variety of problem instances. Further, we apply the TDRA to a real-world case study for e-commerce delivery in São Paulo, Brazil. Our numerical results suggest significant reductions in customer waiting time to be gained from the proposed multi-modal delivery model.  相似文献   

20.
The routing and wavelength assignment (RWA) problem typically occurs in wavelength division multiplexing optical networks. Given a number of available wavelengths, we consider here the problem of maximising the number of accepted connections with respect to the clash and continuity constraints. We first propose a new strategy which combines two existing models. This leads to an improved column generation scheme. We also present two heuristics to compute feasible solutions: a hybrid heuristic and the integer solution at the root node of the column generation. Our approaches are compared with the best existing results on a set of classic RWA instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号