首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a two-stage tandem queueing network where jobs from station 1 join station 2 with a certain probability. Each job incurs a linear holding cost, different for each station. Each station is attended by a dedicated server, and there is an additional server that is either constrained to serve in station 1 or can serve in both stations. Assuming no switching or other operating costs for the additional server, we seek an allocation strategy that minimizes expected holding costs. For a clearing system we show that the optimal policy is characterized by a switching curve for which we provide a lower bound on its slope. We also specify a subset of the state space where the optimal policy can be explicitly determined.  相似文献   

2.
We consider a two-station tandem queue with a buffer size of one at the first station and a finite buffer size at the second station. Silva et al. (2013) gave a criterion determining the optimal admission control policy for this model. In this paper, we improve the results of Silva et al. (2013) and also solve the problem conjectured by Silva et al. (2013).  相似文献   

3.
In this paper we consider the M t queueing model with infinitely many servers and a nonhomogeneous Poisson arrival process. Our goal is to obtain useful insights and formulas for nonstationary finite-server systems that commonly arise in practice. Here we are primarily concerned with the peak congestion. For the infinite-server model, we focus on the maximum value of the mean number of busy servers and the time lag between when this maximum occurs and the time that the maximum arrival rate occurs. We describe the asymptotic behavior of these quantities as the arrival changes more slowly, obtaining refinements of previous simple approximations. In addition to providing improved approximations, these refinements indicate when the simple approximations should perform well. We obtain an approximate time-dependent distribution for the number of customers in service in associated finite-server models by using the modified-offered-load (MOL) approximation, which is the finite-server steady-state distribution with the infinite-server mean serving as the offered load. We compare the value and lag in peak congestion predicted by the MOL approximation with exact values for M t/M/s delay models with sinusoidal arrival-rate functions obtained by numerically solving the Chapman–Kolmogorov forward equations. The MOL approximation is remarkably accurate when the delay probability is suitably small. To treat systems with slowly varying arrival rates, we suggest focusing on the form of the arrival-rate function near its peak, in particular, on its second and third derivatives at the peak. We suggest estimating these derivatives from data by fitting a quadratic or cubic polynomial in a suitable interval about the peak. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
We consider the finite capacity M/M/1−KM/M/1K queue with a time dependent arrival rate λ(t)λ(t). Assuming that the capacity KK is large and that the arrival rate varies slowly with time (as t/Kt/K), we construct asymptotic approximations to the probability of finding nn customers in the system at time tt, as well as the mean number. We consider various time ranges, where the system is nearly empty, nearly full, or is filled to a fraction of its capacity. Extensive numerical studies are used to back up the asymptotic analysis.  相似文献   

5.
A discrete-time system of a tandem of queues with exogenous arrivals and departures at each stage is considered. A customer leaving queuek–1 departs the system with probability 1– [k] and continues to queuek with probability [k] . Exogenous arrivals to each stage are i.i.d. at each time slot. An approximate analysis of the occupancy and busy-period distributions of each stage based on a General Busy-period with batches and Memoryless (geometric) Idle period renewal Process (GBMIP) provides improved performance over two-state Markov approximations and gives exact results when there are no interstage departures.This research was supported in part by NSF grant NCR-8708282.  相似文献   

6.
Righter  Rhonda 《Queueing Systems》2000,34(1-4):289-300
We consider an M/M/2 system with nonidentical servers and multiple classes of customers. Each customer class has its own reward rate and holding cost. We may assign priorities so that high priority customers may preempt lower priority customers on the servers. We give two models for which the optimal admission and scheduling policy for maximizing expected discounted profit is determined by a threshold structure on the number of customers of each type in the system. Surprisingly, the optimal thresholds do not depend on the specific numerical values of the reward rates and holding costs, making them relatively easy to determine in practice. Our results also hold when there is a finite buffer and when customers have independent random deadlines for service completion.  相似文献   

7.
We consider a problem of scheduling in a multi-class network of single-server queues in series, in which service times at the nodes are constant and equal. Such a model has potential application to automated manufacturing systems or packet-switched communication networks, where a message is divided into packets (or cells) of fixed lengths. The network is a series-type assembly or transfer line, with the exception that there is an additional class of jobs that requires processing only at the first node (class 0). There is a holding cost per unit time that is proportional to the total number of customers in the system. The objective is to minimize the (expected) total discounted holding cost over a finite or an infinite horizon. We show that an optimal policy gives priority to class-0 jobs at node 1 when at least one of a set ofm–1 inequalities on partial sums of the components of the state vector is satisfied. We solve the problem by two methods. The first involves formulating the problem as a (discrete-time) Markov decision process and using induction on the horizon length. The second is a sample-path approach using an interchange argument to establish optimality.The research of this author was supported by the National Science Foundation under Grant No. DDM-8719825. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.  相似文献   

8.
Koole  Ger  Righter  Rhonda 《Queueing Systems》1998,28(4):337-347
We consider optimal policies for reentrant queues in which customers may be served several times at the same station. We show that for tandem reentrant queues the last-buffer first-served (LBFS) policy stochastically maximizes the departure process. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
We consider a queueing system with two stations served by a single server in a cyclic manner. We assume that at most one customer can be served at a station when the server arrives at the station. The system is subject to service interuption that arises from server breakdown. When a server breakdown occurs, the server must be repaired before service can resume. We obtain the approximate mean delay of customers in the system.  相似文献   

10.
This paper is concerned with the optimal design of queueing systems. The main decisions in the design of such systems are the number of servers, the appropriate control to have on the arrival rates, and the appropriate service rate these servers should possess. In the formulation of the objective function to this problem, most publications use only linear cost rates. The linear rates, especially for the waiting cost, do not accurately reflect reality. Although there are papers involving nonlinear cost functions, no paper has ever considered using polynomial cost functions of degree higher than two. This is because simple formulas for computing the higher moments are not available in the literature. This paper is an attempt to fill this gap in the literature. Thus, the main contributions of our work are as follows: (i) the derivation of a very simple formula for the higher moments of the waiting time for the M/M/s queueing system, which requires only the knowledge of the expected waiting time; (ii) proving their convexity with respect to the design variables; and (iii) modeling and solving more realistic design problems involving general polynomial cost functions. We also focus on simultaneous optimization of the staffing level, arrival rate and service rate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A large fixed number of buffer spaces is given. We consider the problem of allocating these spaces among the nodes of a tandem of last-come-first-served queues with general service time distributions and Poisson external arrivals so as to optimize some performance criterion associated with the time to buffer overflow, such as maximizing its mean or maximizing the probability that it exceeds some value. Consider the following rule of thumb: allocate the buffer spaces in inverse proportion to the logarithms of the effective service rates at the nodes. Here effective service rate denotes the ratio of the service rate to the stationary arrival rate. We prove that this rule of thumb achieves a nearly optimal buffer allocation under the assumption that the service time distributions satisfy an exponential tail condition. This problem has been studied earlier in the context of Jackson networks, where it was shown that the same rule of thumb achieves an allocation that is close to optimal. The technique of proof here is similar, but there are important differences. Both Jackson networks and the LCFS tandems considered here are product form networks (with infinite buffers). Optimism should lead us to expect that the near optimality of this rule of thumb holds much more generally for product-form networks, but this remains a conjecture at present.Research supported by NSF under NCR 8857731, by AT&T, and by Bellcore Inc.Research supported by IBM under a graduate fellowship.  相似文献   

12.
This paper introduces a generalization of the classical parallel-server fork-join queueing system in which arriving customers fork into multiple tasks, every task is uniquely assigned to one of the set of single-server queues, and each task consists of multiple iterations of different stages of execution, including task vacations and communication among sibling tasks. Several classes of dynamic polices are considered for scheduling multiple tasks at each of the single-server queues to maintain effective server utilization. The paper presents an exact matrix-analytic analysis of generalized parallel-server fork-join queueing systems, for small instances of the stochastic model, and presents an approximate matrix-analytic analysis and fixed-point solution, for larger instances of the model.  相似文献   

13.
We provide an approximate analysis of the transient sojourn time for a processor sharing queue with time varying arrival and service rates, where the load can vary over time, including periods of overload. Using the same asymptotic technique as uniform acceleration as demonstrated in [12] and [13], we obtain fluid and diffusion limits for the sojourn time of the Mt/Mt/1 processor-sharing queue. Our analysis is enabled by the introduction of a “virtual customer” which differs from the notion of a “tagged customer” in that the former has no effect on the processing time of the other customers in the system. Our analysis generalizes to non-exponential service and interarrival times, when the fluid and diffusion limits for the queueing process are known.  相似文献   

14.
In this paper, we develop an approximation method for throughput in tandem queues with multiple independent reliable servers at each stage and finite buffers between service stations. We consider the blocking after service (BAS) blocking protocol of each service stage. The service time distribution of each server is exponential. The approximation is based on the decomposition of the system into a set of coupled subsystems which are modeled by two-stage tandem queue with two buffers and are analyzed by using the level dependent quasi-birth-and-death (LDQBD) process.  相似文献   

15.
This paper introduces a new class of queues which are quasi-reversible and therefore preserve product form distribution when connected in multinode networks. The essential feature leading to the quasi-reversibility of these queues is the fact that the total departure rate in any queue state is independent of the order of the customers in the queue. We call such queues order independent (OI) queues. The OI class includes a significant part of Kelly's class of symmetric queues, although it does not cover the whole class. A distinguishing feature of the OI class is that, among others, it includes the MSCCC and MSHCC queues but not the LCFS queue. This demonstrates a certain generality of the class of OI queues and shows that the quasi-reversibility of the OI queues derives from causes other than symmetry principles. Finally, we examine OI queues where arrivals to the queue are lost when the number of customers in the queue equals an upper bound. We obtain the stationary distribution for the OI loss queue by normalizing the stationary probabilities of the corresponding OI queue without losses. A teletraffic application for the OI loss queue is presented.  相似文献   

16.
Susan H. Xu 《Queueing Systems》1994,18(3-4):273-300
This paper studies theadmission andscheduling control problem in anM/M/2 queueing system with nonidentical processors. Admission control renders when a newly arrived job should be accepted, whereas scheduling control determines when an available processor should be utilized. The system received a rewardR when a job completes its service and pays a unit holding costC while a job is in the system. The main goal of the paper is to obtain the admission/scheduling policy that maximizes the expected discounted and long-run average profits (reward minus cost). We convert the system into its dual, a stochastically identical system subject toexpulsion/scheduling control, and prove that the individually optimal policy in the dual system is socially optimal in the original system. In contrast with the dynamic programming (DP) technique which considers the system as a whole, we adopt the viewpoint of an individual job and analyze the impact of its behavior on the social outcome. The key properties which simplify the analysis are that under the individually optimal policy the profit of a job under the preemptive last-come first-priority service discipline (LCFP-P) is independent of jobs arrived earlier than itself and that the system is insensitive to service discipline imposed. The former makes possible to bypass complex dynamic programming analyses and the latter serves as a vehicle in connecting the social and individual optimality. We also exploit system operational characteristics under LCFP-P to obtain simple and close approximations of the optimal thresholds.  相似文献   

17.
The main aim of this paper is to study the steady state behavior of an M/G/1-type retrial queue in which there are two flows of arrivals namely ingoing calls made by regular customers and outgoing calls made by the server when it is idle. We carry out an extensive stationary analysis of the system, including stability condition, embedded Markov chain, steady state joint distribution of the server state and the number of customers in the orbit (i.e., the retrial group) and calculation of the first moments. We also obtain light-tailed asymptotic results for the number of customers in the orbit. We further formulate a more complicate but realistic model where the arrivals and the service time distributions are modeled in terms of the Markovian arrival process (MAP) and the phase (PH) type distribution.  相似文献   

18.
In the highly unpredictable environment of grid computing, it often makes sense to replicate the same job on several of the available servers. We prove that never replicating is optimal for a heterogeneous multi-server system in a random environment when service times are New Better than Used.  相似文献   

19.
Master Production Schedules (MPS) are widely used in industry, especially within Enterprise Resource Planning (ERP) software. The classical approach for generating MPS assumes infinite capacity, fixed processing times, and a single scenario for demand forecasts. In this paper, we question these assumptions and consider a problem with finite capacity, controllable processing times, and several demand scenarios instead of just one. We use a multi-stage stochastic programming approach in order to come up with the maximum expected profit given the demand scenarios. Controllable processing times enlarge the solution space so that the limited capacity of production resources are utilized more effectively. We propose an effective formulation that enables an extensive computational study. Our computational results clearly indicate that instead of relying on relatively simple heuristic methods, multi-stage stochastic programming can be used effectively to solve MPS problems, and that controllability increases the performance of multi-stage solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号