首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The underivatized saponins from Tribulus terrestris and Panax ginseng have been investigated by electrospray ionization multi-stage tandem mass spectrometry (ESI-MS(n)). In ESI-MS spectra, a predominant [M + Na](+) ion in positive mode and [M - H](-) ion in negative mode were observed for molecular mass information. Multi-stage tandem mass spectrometry of the molecular ions was used for detailed structural analysis. Fragment ions from glycoside cleavage can provide information on the mass of aglycone and the primary sequence and branching of oligosaccharide chains in terms of classes of monosaccharides. Fragment ions from cross-ring cleavages of sugar residues can give some information about the linkages between sugar residues. It was found that different alkali metal-cationized adducts with saponins have different degrees of fragmentation, which may originate from the different affinity of a saponin with each alkali metal in the gas phase. ESI-MS(n) has been proven to be an effective tool for rapid determination of native saponins in extract mixtures, thus avoiding tedious derivatization and separation steps.  相似文献   

2.
Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) was coupled with atmospheric pressure photoionization (APPI) for the first time and used for the analysis of several corticosteroids.1 The analytes showed excellent response using APPI when compared with both electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). APPI has the advantage of requiring less heat for desolvation, resulting in less thermal degradation of the analytes and higher signal-to-noise than APCI. In terms of ultimate sensitivity, APPI is more efficient than either ESI or APCI for the analysis of corticosteroids. With some compounds, the high-resolution capability of FTICRMS was necessary to obtain an accurate mass due to contributions of the M(+.) (13)C isotope in the [M+H](+) ion peak.  相似文献   

3.
Silver-ion high-performance liquid chromatography (HPLC) coupled to atmospheric pressure chemical ionization mass spectrometry (APCI-MS) is used for the regioisomeric analysis of triacylglycerols (TGs). Standard mixtures of TG regioisomers are prepared by the randomization reaction from 8 mono-acid TG standards (tripalmitin, tristearin, triarachidin, triolein, trielaidin, trilinolein, trilinolenin and tri-gamma-linolenin). In total, 32 different regioisomeric doublets and 11 triplets are synthesized, separated by silver-ion HPLC using three serial coupled chromatographic columns giving a total length of 75cm. The retention of TGs increases strongly with the double bond (DB) number and slightly for regioisomers having more DBs in sn-1/3 positions. DB positional isomers (linolenic vs. γ-linolenic acids) are also separated and their reverse retention order in two different mobile phases is demonstrated. APCI mass spectra of all separated regioisomers are measured on five different mass spectrometers: single quadrupole LC/MSD (Agilent Technologies), triple quadrupole API 3000 (AB SCIEX), ion trap Esquire 3000 (Bruker Daltonics), quadrupole time-of-flight micrOTOF-Q (Bruker Daltonics) and LTQ Orbitrap XL (Thermo Fisher Scientific). The effect of different types of mass analyzer on the ratio of [M+H-R(i)COOH](+) fragment ions in APCI mass spectra is lower compared to the effect of the number of DBs, their position on the acyl chain and the regiospecific distribution of acyl chains on the glycerol skeleton. Presented data on [M+H-R(i)COOH](+) ratios measured on five different mass analyzers can be used for the direct regioisomeric determination in natural and biological samples.  相似文献   

4.
Four isomers of steroidal saponins were differentiated using multiple-stage tandem mass spectrometry combined with electrospray ionization (ESI-MS(n)). With the addition of lithium salt, the [M+Li](+) ions of saponins were observed in the ESI spectra. MS(n) spectra of these [M+Li](+) ions provided detailed structural information and allowed differentiation of the four isomeric saponins. The cross-ring cleavage ions from the saccharide chains of the saponins could be used as diagnostic ions for information concerning the linkage of the sugar moieties of the saponins. The masses of the X, A, Y and C type fragment ions formed from [M+Li](+) ions of the isomeric saponins provided information defining the methyl group locations.  相似文献   

5.
Until recently, atmospheric pressure photoionization (APPI) has typically been used for the determination of non-polar halogenated flame retardants (HFRs) by liquid chromatography (LC) tandem mass spectrometry. In this study, we demonstrated the feasibility of utilizing liquid chromatography atmospheric pressure chemical ionization (APCI) tandem mass spectrometry (LC-APCI-MS/MS) for analysis of 38 HFRs. This developed method offered three advantages: simplicity, rapidity, and high sensitivity. Compared with APPI, APCI does not require a UV lamp and a dopant reagent to assist atmospheric pressure ionization. All the isomers and the isobaric compounds were well resolved within 14-min LC separation time. Excellent instrument detection limits (6.1 pg on average with 2.0 μL injection) were observed. The APCI mechanism was also investigated. The method developed has been applied to the screening of wastewater samples for screening purpose, with concentrations determined by LC-APCI-MS/MS agreeing with data obtained via gas chromatography high resolution mass spectrometry.
Figure
LC-APCI-MS/MS for analysis of halogenated flame reterdants  相似文献   

6.
Results are presented from a systematic study of the high-energy tandem mass spectra (fragment ion spectra) of derivitized (permethylation followed by LiAlH4 reduction) porcine glycosphingolipids (GSLs) using a four-sector mass spectrometer. The ions studied were the ammonium ions of the GSLs formed on loss of the sphingosine side-chain following electron impact ionization. Fragment ion spectra are shown to provide structural data useful in identifying carbohydrate sequence, the location of hexosamine residues and the identification of fatty acid chain length. Differences between the fragment ion spectra of isomers differing in carbohydrate linkage position and stereochemistry were observed, but not easily predicted.  相似文献   

7.
Structural characterization of arabinoxylans from wheat by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and electrospray ionization (ESI) mass spectrometry using a Q-TOF mass analyser (ESI-Q-TOF) or an ion trap (IT) mass analyser is presented. An arabinoxylan sample digested with endoxylanase A was analysed using MALDI-TOF mass spectrometry (MS), resulting in the identification of molecular ions for structures with up to 22 monosaccharide residues. As the two-component monosaccharides xylose and arabinose are isobaric, structures differing in the number of arabinose branching residues were indistinguishable based on molecular mass and also fragmentation pattern upon collision-induced dissociation (CID). Permethylation followed by ESI-CID analyses using ITMS was performed to obtain structural information regarding the number of arabinose branching residues and their spatial arrangement along the xylose backbone. Analysis of the signal corresponding to an oligomer with six monosaccharide residues showed the presence of at least four isomeric structures differing in degree of branching and position of the branched residue relative to the cleavage site of the enzyme. This is the first demonstration of the use of ESI-ITMS for the structural characterization of arabinoxylan mixtures.  相似文献   

8.
Several alkyl 2',3'-didehydro-2',3'-dideoxythymidin-5'-yl H-phosphonates were synthesized and analyzed by electrospray ionization multistage tandem mass spectrometry (ESI-MS(n)). Two kinds of novel benzyl rearrangement reactions were observed in ESI - MS(2) of [M + H](+), [M + Na](+) and [M + K](+) of benzyl 2',3'-didehydro-2',3'-dideoxythymidin-5' yl H-phosphonate. Results from tandem mass spectrometry, high-resolution mass spectrometry and control experiments showed that the benzyl migration could undergo a four-membered cyclic rearrangement reaction, and benzyl was essential in the process.  相似文献   

9.
The electron impact tandem mass spectrometry of 3- and 5-nitropyridinylaryl sulfides are reported and discussed. The [M-1](+) ion is observed as the base peak for all the 5-nitropyridinylaryl sulfides, series I, whereas the 2-mercapto-3-nitrosopyridine fragment at m/z 139 represents the base peak for the 3-nitro isomers, series II, with the exception of the 3-substituted derivatives and the unsubstituted parent sulfide. The proposed fragmentation processes are substantiated by tandem mass spectrometry (MS/MS). Hammett correlation analysis of the substituent effect on the formation of fragments [RH(4)C(6)S](+), [C(6)H(4)R](+) and [M-HNO(2)](+) is discussed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

10.
Liquid chromatography (LC) and ion mobility (IM) separation have been coupled with mass spectrometry (MS) and tandem mass spectrometry (MS2) to characterize a commercially important nonionic surfactant, polysorbate 85. The constituents of this amphiphilic blend contained a sorbitan or isosorbide core that was chain extended with poly(ethylene oxide) (PEO) and partially esterified at the PEO termini with oleic acid or, to a lesser extent, other fatty acids. Using interactive LC in reverse-phase mode, the oligomers of the surfactant were separated according to their hydrophobicity/hydrophilicity balance. On the other hand, IM spectrometry dispersed the surfactant oligomers by their charge and collision cross section (i.e. size/shape). With either separation method, an increased number of fatty ester groups and/or lack of the polar sorbitan (or isosorbide) core led to higher retention/drift times, enabling the separation of isobaric species or species with superimposed isotope patterns, so that their ester content could be conclusively identified by MS2. LC–MS and IM–MS permitted the detection of several byproducts besides the major PEO-sorbitan oleate oligomers. LC–MS provides the separation resolution needed for quantitative determination of the degree of esterification. IM–MS, which minimizes analysis time and solvent use, is ideally suitable for a fast, qualitative survey of samples differing in their minor constituents or impurities.  相似文献   

11.
Fast atom bombardment mass spectrometry in the positive mode was used for the characterization of sodiated glycerol phosphatidylcholines. The relative abundance (RA) of the protonated species is similar to the RA of the sodiated molecular species. The sodiated fragment ion, [M + Na - 59](+), corresponding to the loss of trimethylamine, and other sodiated fragment ions, were also observed. The decomposition of the sodiated molecule is very similar for all the studied glycerol phosphatidylcholines, in which the most abundant ion corresponds to a neutral loss of 59 Da. Upon collision-induced dissociation (CID) of the [M + Na](+) ion informative ions are formed by the losses of the fatty acids in the sn-1 and sn-2 positions. Other major fragment ions of the sodiated molecule result from loss of non-sodiated and sodiated choline phosphate, [M + Na - 183](+), [M + Na - 184](+.) and [M + Na - 205](+), respectively. The main CID fragmentation pathway of the [M + Na - 59](+) ion yields the [M + Na - 183](+) ion, also observed in the CID spectra of the [M + Na](+) molecular ion. Other major fragment ions are [M + Na - 205](+) and the fragment ion at m/z 147. Collisional activation of [M + Na - 205](+) results in charge site remote fragmentation of both fatty acid alkyl chains. The terminal ions of these series of charge remote fragmentations result from loss of part of the R(1) or R(2) alkyl chain. Other major informative ions correspond to acylium ions.  相似文献   

12.
We applied low-energy collisionally activated dissociation (CAD) tandem quadrupole mass spectrometry to study the fragmentation pathways of the [M + H](+) and [M + Li](+) ions of phosphatidylcholine (PC), generated by electrospray ionization (ESI). It is revealed that the fragmentation pathways leading to loss of the polar head group and of the fatty acid substituents do not involve the hydrogens attached to the glycerol backbone as previously reported. The pathway for formation of the major ion of m/z 184 by loss of the polar head group from the [M + H](+) precursor of a diacyl PC involves the participation of the alpha-hydrogen of the fatty acyl substituents, whereas the H(+) participates in the loss of fatty acid moieties. The alpha-hydrogens of the fatty acid substituents also participate in the major fragmentation processes, including formation of [M + Li-R(x)CO(2)H](+) and [M + Li-59-R(x)CO(2)H](+) ions for the [M + Li](+) ions of diacyl PCs, when subjected to low-energy CAD. These fragmentation processes are deterred by substitution of the fatty acyl moieties with alkyl, alkenyl, or hydroxyl groups and consequentially, result in a distinct product-ion spectrum for various PC, including diacyl-, plasmanyl- plasmenyl-, and lyso-PC isomers. The alpha-hydrogens of the fatty acyl substituents at sn-2 are more labile than those at sn-1. This is reflected by the preferential loss of the R(1)CO(2)H over the R(2)CO(2)H observed for the [M + Li](+) ions of diacyl PCs. The spectrum features resulting from the preferential losses permit identification and assignment of the fatty acid moieties in the glycerol backbone. The new fragmentation pathways established by tandem and source CAD tandem mass spectra of various PC molecules, including deuterium-labeling analogs, were proposed. These pathways would clarify the mechanisms underlying the ion formations that lead to the structural characterization of PC molecules.  相似文献   

13.
Polyacrylamide gel electrophoresis is widely used for protein separation and it is frequently the final step in protein purification in biochemistry and proteomics. Using a commercially available amine-reactive isobaric tagging reagent (iTRAQ) and mass spectrometry we obtained reproducible, quantitative data from peptides derived by tryptic in-gel digestion of proteins and phosphoproteins. The protocol combines optimized reaction conditions, miniaturized peptide handling techniques and tandem mass spectrometry to quantify low- to sub-picomole amounts of (phospho)proteins that were isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immobilized metal affinity chromatography (FeIII-IMAC) was efficient for removal of excess reagents and for enrichment of derivatized phosphopeptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Phosphopeptide abundance was determined by liquid chromatography/tandem mass (LC/MS/MS) using either MALDI time-of-flight/time-of-flight (TOF/TOF) MS/MS or electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS instruments. Chemically labeled isobaric phosphopeptides, differing only by the position of the phosphate group, were distinguished and characterized by LC/MS/MS based on their LC elution profile and distinct MS/MS spectra. We expect this quantitative mass spectrometry method to be suitable for systematic, comparative analysis of molecular variants of proteins isolated by gel electrophoresis.  相似文献   

14.
Acetylated neutral (Xyl(n)Ac(m)) and acidic xylo-oligosaccharides (Xyl(n)Ac(m)MeGlcA, and Xyl(n)Ac(m)MeGlcAHex) obtained by partial acid hydrolysis of Eucalyptus globulus wood glucuronoxylans and fractionated by preparative ligand exchange/size-exclusion chromatography were identified by electrospray ionisation mass spectrometry (ESI-MS). Low molecular weight acetylated xylo-oligosaccharides were studied by ESI-tandem mass spectrometry (MS/MS). All the acetylated xylo-oligosaccharides showed an abundant ion due to the neutral loss of 60 Da (CH(3)CO(2)H) in the MS/MS spectra. The presence of diacetylated xylo-oligosaccharides was confirmed by the ions formed by loss of two molecules of acetic acid. Furthermore, characteristic [Xyl(res)Ac(2)+Na](+) and [XylAc(2)+Na](+) ions, and ions due to loss of XylAc(2), indicate that both acetyl groups are located in the same Xyl residue. On the other hand, losses of Xyl(res)Ac and XylAc are also observed as well as [Xyl(res)Ac+Na](+) and [XylAc+Na](+) , indicating the location of both acetyl groups in different Xyl residues, in some cases even in adjacent xyloses. The MS/MS spectra of triacetylated xylo-oligosaccharides were complex due to the presence of different isobaric xylo-oligosaccharides containing the acetyl groups at different locations in the xylo-oligosaccharide backbone. In the MS/MS spectra of acidic xylo-oligosaccharides, the ion at m/z 387, [Xyl(res)AcMeGlcA+Na](+), indicates that the acetyl groups are preferentially linked to Xyl substituted with MeGlcA. However, acidic xylo-oligosaccharides with the acetyl and 4-O-methylglucuronic acid groups in different Xyl residues were also identified. In neutral and in acidic xylo-oligosaccharides several possible locations of the acetyl groups were identified, namely at terminal positions. In summary, ESI-MS/MS is shown to be a powerful tool for the characterisation of acetylated patterns in complex mixtures of oligosaccharides.  相似文献   

15.
For detection and differentiation of two types of triterpenoid saponins based on different aglycons of the lupane and oleanane skeleton from the roots of Pulsatilla chinensis (Bunge) Regel, the silver ion was introduced and electrospray ionization multi-stage tandem mass spectrometry was applied to analyze eleven triterpenoid saponin silver complexes. The quasi-molecular ion [M+Ag](+) was observed in the full-scan MS spectra of all the silver complexes. The MS(2) data of the [M+Ag](+) ion provided structural information on the sugar sequence of the oligosaccharide chains and the aglycon of the saponins. There are two patterns in the cleavage pathway of oleanane-type saponins. One is elimination of the sugar chain and subsequent loss of the carboxylic group which is the same as the cleavage of lupine-type saponins. The other is loss of the distinguishing ions at m/z 72 and 28 (C(2)H(4)) followed by loss of the carboxylic group. Diagnostic fragmentation pathways of the silver complexes of the saponins allow successful identification of the two types of saponins from the roots of Pulsatilla chinensis (Bunge) Regel.  相似文献   

16.
We examined the feasibility of capillary liquid chromatography/microchip atmospheric pressure photoionization tandem mass spectrometry (capLC/µAPPI‐MS/MS) for the analysis of anabolic steroids in human urine. The urine samples were pretreated by enzymatic hydrolysis (with β‐glucuronidase from Helix pomatia), and the compounds were liquid‐liquid extracted with diethyl ether. After separation the compounds were vaporized by microchip APPI, photoionized by a 10 eV krypton discharge lamp, and detected by selected reaction monitoring. The capLC/µAPPI‐MS/MS method showed good sensitivity with detection limits at the level of 1.0 ng mL?1, good linearity with correlation coefficients between 0.9954 and 0.9990, and good repeatability with relative standard deviations below 10%. These results demonstrate that microchip APPI combined with capLC/MS/MS provides a new potential method for analyzing non‐polar and neutral compounds in biological samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The present study describes the use of electrospray ionisation mass spectrometry, in combination with collision-induced dissociation (CID) and tandem mass spectrometry, for the structural characterisation of anthocyanidins and their O-glycosides. The high-energy CID spectra of [M-Cl](+) ions of the free aglycones show characteristic fragmentation pathways, which provide useful information about the substitution pattern in the A- and B-rings of each compound. The major fragmentation observed in the high-energy CID spectra of [M-Cl](+) ions of anthocyanins involves loss of the mono- or disaccharide units resulting in ions containing only the aglycone moiety. From the spectral data, the identity of the aglycone can be established as well as the number and the class of monosaccharide units in the O-glycosides.  相似文献   

18.
A series of lysophosphatidylcholines were isolated from the marine sponge Spirastrella abata by reversed-phase high performance liquid chromatography (HPLC) and analyzed by fast atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecular ions produced diverse product ions via a series of dissociative processes. Because of the positive charge of the amine group at the end of the molecules, charge-remote fragmentation patterns of specific ions, [M + H](+) or [M + Na](+), were very helpful for the identification of product ions which are characteristic for choline and long hydrocarbon chains substituted at the glycerol back bone. Moreover, the CID-MS/MS spectra of sodium adducted molecular ions for lysophosphatidylcholines yielded common characteristic fragment ions for the choline moiety and characteristic ions [M + Na-103](+), [M + Na-85](+) and [M + Na-59](+) in the higher mass region.  相似文献   

19.
The structural determination of sn-1 and sn-2 hexadecanoic lysophosphatidylcholine (LPC) regioisomers was carried out using fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecules produced diverse product ions due mainly to charge remote fragmentations. Based on the information obtained from the CID spectra of protonated and sodiated molecules, sn-1 and sn-2 hexadecanoic LPC isomers could be discriminated. Especially, the abundance ratio of the diagnostic ion pair [m/z 224/226] in the CID spectra of [M + H](+) ions was shown to be greatly different. Moreover, the CID-MS/MS spectra of sodium-adducted molecules for hexadecanoic LPC isomers showed characteristic product ions such as [M + Na - 103](+), [M + Na - 85](+), and [M + Na - 59](+), by which their regio-specificity can be differentiated.  相似文献   

20.
Nano-electrospray tandem mass spectrometry (nano-ES-MS/MS) was used to record collision-induced dissociation (CID) spectra of a set of peptoid-peptide hybrids and the complete peptoid derived from the phosphopeptide Ac-pTyr-Glu-Thr-Leu-NH(2) (1). The presence of B and Y'-type fragment ions in the tandem mass spectra of the protonated molecular ions [M + H](+) allowed confirmation of sequence similar to mass spectrometric sequence analysis in peptides. In the isomeric peptoid compounds studied, one or several amino acid residues were replaced by peptoid residues (N-substituted glycine residues), which resulted in characteristic tandem mass spectra with differently increased relative abundances of Y'-and B-type fragment ions. The increment of a particular Y'-ion was directly correlated to the position of a peptoid residue present. In addition to these increased peak intensities, other characteristic peaks were also observed compared with the spectrum of reference peptide 1. When a peptoid phosphotyrosine was incorporated, the presence of this residue was apparent from the occurrence of a relatively intense peak at m/z 187 representing the positively charged side-chain of phosphotyrosine, which was almost absent in the spectrum of the reference peptide 1. Since the threonine side-chain had to be translated into the homo peptoid analog this substitution was apparent from the presence of [M + H](+) and fragment ions 14 mass units higher than observed in the spectrum of the reference phosphopeptide 1. The presence of an NLeu peptoid residue could be confirmed by the specific fragmentation of the immonium ion showing an intense peak in its tandem mass spectrum at m/z 57, which results from the loss of an neutral imine molecule leading to a positively charged [C(4)H(9)](+) ion. By means of these mass spectrometric characteristics, all isomeric peptoid compounds could be distinguished from each other and characterized. The methods used appear to be very useful in future studies of peptoids and peptoid-peptide hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号