首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersion of ion-acoustic fluctuations has been measured using a novel technique that employs multiple color Thomson-scattering diagnostics to measure the frequency spectrum for two separate thermal ion-acoustic fluctuations with significantly different wave vectors. The plasma fluctuations are shown to become dispersive with increasing electron temperature. We demonstrate that this technique allows a time resolved local measurement of electron density and temperature in inertial confinement fusion plasmas.  相似文献   

2.
The linear characteristics of the unstable mode of ion-acoustic waves are examined in an electrostatic electron-ion plasma composed of streaming hot electrons, non-streaming cold electrons and dynamical positive ions. The plasma under consideration is modeled by using a non-gyrotropic nonextensive q-distribution function in which the free energy source for wave excitation is provided by the relative directed motion of streaming hot electrons with respect to the other plasma species. In the frame work of kinetic model, a linearized set of Vlasov–Poisson's equations are solved to obtain the analytical expressions for dispersion relation and Landau damping rate. The threshold condition for the unstable ionacoustic wave is derived to assess the stability of the wave in the presence of nonextensive effects. Growth in the wave spectrum and nontrivial effects of q-nonextensive parameter on the ion-acoustic waves can be of interest for the readers in the regions of Saturns' s magnetosphere.  相似文献   

3.
《Physics letters. A》2002,296(1):54-60
A problem of scattered radiation spectrum line width of stimulated Brillouin scattering (SBS) in plasma with two species of ions is considered. Threshold conditions, when SBS shifted frequency lines, which characterize the scattered radiation spectrum, are comparatively wide and are comparatively narrow, are defined. A possibility of existence of the scattered radiation spectrum with the frequency line width comparable to the ion-acoustic frequency is revealed.  相似文献   

4.
We present the first direct experimental observation of the parametric two-ion decay instability of ion-acoustic waves driven by a high intensity (5 x 10(15) W cm(-2)) laser beam in a laser produced high-Z plasma. Using two separate Thomson scattering diagnostics simultaneously, we directly measure the scattering from thermal ion-acoustic fluctuations, the primary ion waves that are driven to large amplitudes by the high intensity beam, and the two-ion decay products. The decay products are shown to be present only where the interaction takes place and their k spectrum is broad.  相似文献   

5.
Using a narrowed spectrum Nd3+ glass laser, we show that besides parametric excitation of ion-acoustic waves, another different mechanism contributes at the same time to the second harmonic line generation in a laser created plasma.  相似文献   

6.
The stimulated Brillouin effect in gaseous plasma is investigated by means of classical coupledmode analysis. This process is described as interaction between an ion-acoustic plasma wave and two light waves. The threshold power levels calculated are achievable in giant-pulse lasers. However, the Brillouin effect may possibly be observable in the dense plasma or in the far infrared region of the electromagnetic spectrum.  相似文献   

7.
The interaction of ion-acoustic solitons with Langmuir waves has been considered. Investigation was performed in the approximation of a slow change in soliton parameters compared with the time of evolution of wave spectrum. This permitted a two-stage solution of the problem. First the Langmuir wave spectrum changes in the given field of a soliton were found. Then the action of high-frequency waves on the soliton was taken into account.  相似文献   

8.
Light mixing techniques were used to scatter at small forward angles with a hybrid CO2-laser from a thermal plasma. The ion temperature and the enhancement of ion-acoustic resonances by ion-ion collisions were obtained from the scattered spectrum recorded in one shot.  相似文献   

9.
The electron kinetic effects are shown to play an important role in the nonlinear evolution of a driven ion-acoustic wave. The numerical simulation results obtained (i) with a hybrid code, in which the electrons behave as a fluid and the ions are described along the particle-in-cell (PIC) method, are compared with those obtained (ii) with a full-PIC code, in which the kinetic effects on both species are retained. The electron kinetic effects interplay with the usual fluid-type nonlinearity to give rise to a broadband spectrum of ion-acoustic waves saturated at a low level, even in the case of a strong excitation. This low asymptotic level might solve the long-standing problem of the small stimulated Brillouin scattering reflectivity observed in laser-plasma interaction experiments.  相似文献   

10.
A self-consistent theory is developed for current drive by intense radiation in the presence of the ion-acoustic instability. The spectrum of ion-acoustic turbulent noise generated by the driven current and concentrated in a limited cone of angles along the propagation direction of the wave is found. Excitation of the instability is accompanied by the establishment of an electron drift that is excited by the electromagnetic wave and has a velocity on the order of the ion acoustic speed. This current drive regime is realized over a wide range of intensities, as long as the region of turbulence in the angles of the acoustic wave vector is expanding. At yet higher intensities, the driven current increases in proportion to the intensity of the fundamental wave. Similar behavior is found for driven heat fluxes. Zh. éksp. Teor. Fiz. 111, 107–119 (January 1997)  相似文献   

11.
薛具奎  段文山  郎和 《中国物理》2002,11(11):1184-1187
Using the standard reductive perturbation technique,a nonlinear Schroedinger equation is derived to study the modulational instability of finite-amplitude ion-acoustic waves in a non-magnetized warm plasma.It is found that the inclusion of ion temperature in the equation modifies the nature of the ion-acoustic wave stability and the soliton stuctures.The effects of ion plasma temperature on the modulational stability and ion-acoustic wave properties are inestigated in detail.  相似文献   

12.
It is established that longitudinal ion-acoustic modes can exist only in the one-dimensional case in a relativistic plasma with an arbitrary particle velocity distribution. The spectrum of the given wave mode is calculated on the basis of Vlasov's kinetic theory for an arbitrary particle velocity distribution function. In particular, the dispersion and logarithmic decrement are found for power-law and Maxwell distribution functions.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 103–107, March, 1995.  相似文献   

13.
The nonlinear ion-acoustic wave excitation and its stability analysis are investigated in a magnetized quantum plasma with exchange-correlation and Bohm diffraction effects of degenerate electrons in the model. Using reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for two dimensional propagation of ion-acoustic wave in a magnetized quantum plasma. It is found that the phase speed, amplitude and width of the nonlinear ion-acoustic wave structures are affected in the presence of exchange-correlation potential in the model. The stability analysis of the 2D ion-acoustic wave pulse is also presented. It is found that growth rate of the first and second order instabilities of 2D ion acoustic wave soliton is enhanced with the inclusion of exchange-correlation potential effect in the model.  相似文献   

14.
The nonlinear wave structures of large amplitude ion-acoustic waves are investigated in an electron beam-plasma system with trapped electrons, by the pseudopotential method. The speed of the ion-acoustic wave increases as the effect of trapped electrons decreases and the beam temperature increases. The region of the existence of ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the effects of the electron beam density and temperature, electrostatic potential, and the effect of trapped electrons. It turns out that the region of existence spreads as the effect of trapped electrons decreases and beam temperature increases. New findings of large amplitude ion-acoustic waves in an electron beam-plasma system with trapped electrons are predicted  相似文献   

15.
In this paper, a charged single-walled carbon nanotube that surrounded by charged nanoparticles is modeled as a cylindrical shell of electron–ion–dust plasma. By employing the fluid theory for electron–ion–dust plasma, the dispersion relation of the dust ion-acoustic wave oscillations in the composed system is studied. For negatively charged dust particles, with increasing dust charge density, the phase velocity of the dust ion-acoustic wave will increase in comparison to the pure ion-acoustic wave oscillations.  相似文献   

16.
The dust grain charging effect on large amplitude ion-acoustic double layers in a dusty plasma are investigated by the numerical calculation. The nonlinear structures of ion-acoustic double layers are examined, showing that the characteristics of the double layer sensitively depend on the dust charging effect, the influence of the ion temperature, the electrostatic potential, and the Mach number. The flow of the plasma current to the surface of dust particles increases the dust charge numbers. The effect of the ion temperature decreases the propagation speed of the ion-acoustic double layers and decreases the dust charge numbers. It is found that rarefactive double layers can propagate in this system. New findings of large amplitude ion-acoustic double layers with the dust charging effect and finite ion temperature in a dusty plasma are predicted  相似文献   

17.
A.Yu. Okulov 《Physics letters. A》2010,374(44):4523-4527
The interaction of the two counter-propagating ultrashort laser pulses with singular wavefronts in the thin slice of the underdense plasma is considered. It is shown that ion-acoustic wave is excited via Brillouin three-wave resonance by corkscrew interference pattern of paraxial singular laser beams. The orbital angular momentum carried by light is transferred to plasma ion-acoustic vortex. The rotation of the density perturbations of electron fluid is the cause of helical current which produces the kilogauss axial quasi-static magnetic field. The exact analytical configurations are presented for an ion-acoustic current field and magnetic induction. The range of experimentally accessible parameters is evaluated.  相似文献   

18.
A study is made of the spectrum of surface waves in a semibounded plasma flow. The frequency spectra and damping rates of the waves propagating along the flow are analyzed both in the high-frequency range (in which the spatial dispersion is weak and the wave damping is governed primarily by electron collisions) and the low-frequency range (in which the spatial-dispersion effects dominate), with focus on the effect of the flow velocity on the propagation of ion-acoustic waves. Special attention is paid to the penetration of a static field into a plasma flowing at a supersonic velocity.  相似文献   

19.
We consider the coupling of ion-acoustic perturbations with large amplitude electron whistler waves. Transonic envelope whistler solitons having a group velocity near the ion-acoustic speed are found.  相似文献   

20.
Overtaking collisions of oblique isothermal ion-acoustic multisolitons are studied in an ultra-relativistic degenerate dense magnetoplasma, containing non-degenerate inertial warm ions and ultra-relativistic degenerate inertialess electrons and positrons. A non-linear Korteweg-de Vries (KdV) equation describing oblique isothermal ion-acoustic solitons (OIIASs) in such a plasma model is derived. By applying Hirota's bilinear method (HBM), the overtaking collisions of oblique isothermal ion-acoustic multisoliton solutions are investigated. An in-depth discussion shows that the amplitude, the width, and the phase shift of isothermal ion-acoustic multisolitons increase as the obliqueness and the chemical potential of electrons increase. The deviation of the trajectories decreases with increasing concentration of fermions and the ion cyclotron frequency. The present finding of this study is applicable in compact objects, such as white dwarfs and neutron stars, having degenerate ultra-relativistic dense electrons and positrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号