共查询到17条相似文献,搜索用时 78 毫秒
1.
为了简化四频差动激光陀螺的信号读出系统,采用了一种基于FPGA实现的数字电路解调方案取代传统的合光棱镜中的1/4波片和偏振片来分离左、右旋陀螺信号。简述了四频差动激光陀螺的信号读出原理及解调电路方案,设计了主要由A/D转换器和FPGA构成的四频陀螺信号读出系统。通过Quartus Ⅱ等EDA工具在软件上对系统予以了实现,并针对其主要功能模块进行了仿真验证。仿真结果表明,将四频陀螺信号转化为数字信号后,利用FPGA实现信号解调并最终达到分离左、右旋陀螺信号的方案是可行的,该方案将有助于全数字化激光陀螺的研制。 相似文献
2.
3.
研究了四频差动激光陀螺输出光强和零偏随纵向磁场的变化规律。理论分析表明,当由纵向磁场引起的增益/色散曲线的塞曼分裂等于非互易分裂时,顺时针模式和逆时针模式的光强相等,零偏不随腔长的变化而变化,实验结果与理论分析基本一致。同时还发现顺时针和逆时针模式的光强随磁场线性变化,但变化量较小且易受温度的影响,不适合作为磁场大小的度量。由于沿谐振腔环路的增益和损耗并非处处相同,顺时针和逆时针光束入射到光电管上的量不相等,因此需要对顺时针和逆时针输出光强的放大倍数进行标定,以便进行色散平衡的控制。 相似文献
4.
四频差动激光陀螺小抖动稳频初步研究 总被引:3,自引:0,他引:3
为避免传统光强差稳频方式的缺陷,提出了四频差动激光陀螺小抖动稳频方法.从四频陀螺工作原理出发,分析了小抖动稳频的特性和难点,如鉴频灵敏度较低、陀螺参量不当时工作点有严重偏移、工作模式不易判别、陀螺零漂受稳频精度影响大.针对每一难点提出,解决办法,特别是极低噪声电路的设计技术是提高四频陀螺小抖动稳频精度的关键.提出的解决方案为进一步实验研究提供了理论指导. 相似文献
5.
异面腔四频差动激光陀螺的色散平衡 总被引:4,自引:1,他引:3
为了减小异面腔四频差动激光陀螺(DLG)腔长变动导致的零漂,对DLG的色散平衡进行了研究.利用气体激光的经典理论,推导了DLG零偏与工作点和轴向磁场的函数关系,给出了色散平衡的理论证明.利用在DLG增益管上缠绕通电线圈,给增益介质施加大小可控的轴向磁场,通过驱动腔平移镜上的压电换能器调节腔长来改变工作点,做出了零偏随腔长和线圈电流的变化曲线.结果表明,零偏对腔长变化的灵敏度是轴向磁场的函数,当增益曲线的塞曼分裂量等于非互易分裂量时零偏对腔长变动不敏感.色散平衡技术减小了腔变动对DLG的影响,有利于提高DLG精度. 相似文献
6.
7.
为了减小四频差动激光陀螺(DILAG)的磁敏感性,研究了工作点对磁敏感性的影响.根据理论分析,磁敏感性主要来自于左、右旋陀螺相对比例因子修正的不对称,它与工作点有关,在最佳工作点下为零.通过在DILAG增益管上缠绕线圈产生轴向磁场,调节附着于腔平移镜上的压电换能器的驱动电压改变工作点,得到磁灵敏度随工作点的变化规律.结果表明,DILAG在最佳工作点下对外界磁场不敏感,且在每个工作区存在唯一的最佳工作点.DILAG工作在最佳工作点可以使外界干扰在差动中消除,因而有利于提高其性能.为了保证DILAG工作在最佳工作点,必须改变传统的光强差稳频方式. 相似文献
8.
针对异面腔四频差动激光陀螺(DILAG)工作模式不确定性和跳模对其性能的负面影响,提出了根据开机时腔体温度快速选择最优初始模的智能选模方法。分析了纵模阶数对DILAG的零偏和比例因子的影响以及跳模的危害,指出选择最优初始模是在现有基础上进一步提高DILAG性能的重要方法。通过温度实验做出了最优模相应的压电换能器(PZT)驱动电压随温度的变化曲线,为建立选模模型提供了基本依据。实验表明,智能选模使腔长控制系统加电后能快速稳定在最优初始模,减小了跳模几率,提高了腔长控制电路的鲁棒性和自适应性,对改善DILAG的性能、可靠性具有实用价值。 相似文献
9.
石英晶体温度效应对四频差动激光陀螺中光场偏振特性的影响 总被引:1,自引:0,他引:1
为研究石英晶体温度效应对四频差动激光陀螺的影响,从陀螺的自再现传播矩阵出发,结合石英晶体旋光率随温度变化的经验公式,利用琼斯矩阵求本征模的方法,得出了四频差动激光陀螺腔内光场本征偏振态与温度的关系并进行了数值分析,得到椭圆度和左右旋差损随温度变化的曲线。结果表明,石英晶体温度效应对偏振特性的影响与反射镜片的振幅反射率和反射相移有密切关系,对于典型陀螺参量,在-60℃~60℃范围内石英晶体温度效应导致左右旋差损从0增加至10-6量级, 椭圆度从0.122增至0.138。 相似文献
10.
四频激光陀螺和频与温度关系的研究 总被引:4,自引:1,他引:4
研究了四频激光陀螺和频与温度之间的关系。通过静态和动态实验 ,证明了和频与温度的线性关系 ,并得到了拟合直线表达式。结果表明 ,和频与温度具有较好的线性关系 ,和频可作为温度测量的计量 ,而且具有较好的重复性。由于测量频率的精度较高 ,故由和频测量温度具有很高的分辨率。 相似文献
11.
四频差动激光陀螺中的粒子数脉动效应 总被引:1,自引:0,他引:1
为研究激光陀螺精细模耦合作用,考虑了增益介质中的粒子数脉动效应.从激光器物理原理出发,分析了粒子数脉动效应的产生机制,结合四频差动激光陀螺特点,得出粒子数脉动效应是一种精细模耦合效应,不同激光模式间的拍频使增益介质中粒子数布居差产生调制,进而对模耦合产生影响.数值计算了粒子数脉动在耦合效应中的大小.计算结果表明:粒子数脉动效应和其他耦合效应随腔频变化基本一致,在大多数腔频范围内数值较小,为其他耦合效应的4%以下;在某些腔频范围(如0.37<ξ<0.46,0.02<ξ<0.06,0.86<ξ<0.88)有较大数值,为其他耦合效应的80%以上,在激光陀螺的模耦合分析中不可忽略. 相似文献
12.
针对目前四频差动激光陀螺光学解调方案可靠性和温度特性差的特点,介绍一种基于FPGA的数字拍频解调方案。分析了四频差动激光陀螺数字拍频解调对电路系统的需求,对数字拍频解调的关键部件低通滤波器进行了设计与实现。根据四频差动激光陀螺的特性参数计算滤波器的通带截止频率及阻带截止频率,使用MATLAB的滤波器设计和分析工具FDATool完成了有限冲击响应(FIR)数字滤波器的参数设计,并利用Xilinx公司的FPGA集成开发环境ISE实现FIR数字滤波器的片上系统设计。仿真和实验结果表明,所设计的FIR数字滤波器对四频差动激光陀螺的和频分量衰减达到-66 dB,满足四频差动激光陀螺拍频解调的需求,并有助于实现四频差动激光陀螺的小型化和数字化。 相似文献
13.
14.
基于希尔伯特变化的微小振动激光多普勒信号处理 总被引:1,自引:0,他引:1
为了实现对固体目标微小振动参数的测量,建立了微小振动的激光多普勒信号模型。采用希尔伯特数字运算,将激光多普勒振动信号的即时信号采样转化为信号的谱采样。通过频谱计算得到每个振动周期中瞬时频率的平均数,应用差值采样序列积分计算得到振动频率,最后根据振动信号频率变化与振幅的关系得到振幅。采用希尔伯特方法对实验测试结果进行处理验证,并分析了误差来源。实验结果表明:实验测量目标的振动振幅约为1.85×10-4m,转动的圆频率约为170 Hz。因此,应用希尔伯特变换方法处理测量的目标微小振动信号,获取目标运动的参数是可行的。 相似文献
15.
针对螺线管磁轴测量中的悬丝位置、测量信号失真、磁轴偏轴和磁轴倾斜信号的分离数据处理要求等问题,采用一种高偏置消除的信号检测与测量方法,并对探测器采用了相关的恒定驱动技术,进一步提高了信号产生的稳定性及抗干扰能力,研制了一种可以获得比较直接的悬丝振动信号的测量系统,解决了单纯采用交流耦合隔直滤波放大器或带通滤波放大器不能获得完全准确的测量信号的问题,确保了在较高的直流偏置下获得没有畸变的较小测量信号,消除了测量信号中低频分量基线倾斜及其中起伏的影响,并实现了磁轴偏移和磁轴倾斜信号的分离,极大地提高了螺线管线圈磁轴的测量灵敏度,实际测试结果显示测量灵敏度提高约1个量级。 相似文献
16.
17.
An optical time-domain differentiation scheme is proposed and demonstrated based on the intensive differential group delay in a high birefringence fibre waveguide. Results show that the differentiation waveforms agree well with the mathematically calculated derivatives. Both error and efficiency will increase when the birefringence fibre becomes longer, and the error rises up more quickly while the efficiency approaches to a maximum of ~0.25. By using a 1-m birefringence fibre a lower error of ~0.26% is obtained with an efficiency of 1% for the first-order differentiation of 10-ps Gaussian optical pulses, and the high-order optical differentiation up to 4th order is achieved with an error less than 3%. Due to its compact structure being easy to integrate and cascade into photonic circuits, our scheme has great potential for ultrafast signal processing. 相似文献