首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The methylation of ethene, propene, and trans‐2‐butene on zeolites H‐ZSM‐58 (DDR), H‐ZSM‐22 (TON), and H‐ZSM‐5 (MFI) is studied to elucidate the particular influence of topology on the kinetics of zeolite‐catalyzed reactions. H‐ZSM‐58 and H‐ZSM‐22 are found to display overall lower methylation rates compared to H‐ZSM‐5 and also different trends in methylation rates with increasing alkene size. These variations may be rationalized based on a decomposition of the free‐energy barriers into enthalpic and entropic contributions, which reveals that the lower methylation rates on H‐ZSM‐58 and H‐ZSM‐22 have virtually opposite reasons. On H‐ZSM‐58, the lower methylation rates are caused by higher enthalpy barriers, owing to inefficient stabilization of the reaction intermediates in the large cage‐like pores. On the other hand, on H‐ZSM‐22, the methylation rates mostly suffer from higher entropy barriers, because excessive entropy losses are incurred inside the narrow‐channel structure. These results show that the kinetics of crucial elementary steps hinge on the balance between proper stabilization of the reaction intermediates inside the zeolite pores and the resulting entropy losses. These fundamental insights into their inner workings are indispensable for ultimately selecting or designing better zeolite catalysts.  相似文献   

4.
Two possible pathways for the acetone + OH reaction towards the formation of methanol have been examined theoretically. Our results show that both channels are characterized by a substantial activation barrier and reject the possibility of a significant CH3CO + CH3OH channel. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
6.
7.
XAFS (both XANES and FT-EXAFS) measurements revealed that the Pb2+ /ZSM-5 catalyst prepared from precursor H-ZSM-5 by a conventional ion-exchange method includes a highly dispersed 3-fold coordinated Pb2+ ion species within the zeolite framework. UV-irradiation of Pb2+ /ZSM-5 led to effective decomposition of NO and N2O producing N2. The photocatalytic decomposition of NO is found to be slightly preferable than that of N2O. The isolated Pb2+ ions play a significant role in the decomposition of pollutant NO x . Ab initio and DFT quantum chemical studies at the HF/Lanl2dz and B3PW91/Lanl2dz levels further shed light on local structures of the Pb2+ active site of lead-containing zeolites, as well as on their interactions with pollutant NO and N2O molecules. In agreement with experiments, 3-fold coordination was found to be the most favorable state for the Pb2+ site within the zeolite framework.  相似文献   

8.
Acylation of acetylcholine (ACh) catalyzed by acetylcholinesterase (AChE) has been studied using high-level theoretical calculations on a model system that mimics the reaction center of the enzyme, and compared with uncatalyzed acylation reaction. The geometries of all the intermediates and transition states, activation energies, and solvent effects have been calculated. The calculations predict simultaneous formation of two short-strong hydrogen bonds (SSHB) in the rate-determining transition state structures [the first SSHB involves the hydrogen atom of Ser-200 (H(s)) and another involves the hydrogen atom of His-440 (H(h))]. In the intermediate states, the H-bond corresponding to H(h) involves SSHB, whereas the one corresponding to H(s) does not.  相似文献   

9.
Ethylene dimerization was investigated by using an 84T cluster of faujasite zeolite modeled by the ONIOM3(MP2/6-311++G(d,p):HF/6-31G(d):UFF) method. Concerted and stepwise mechanisms were evaluated. In the stepwise mechanism, the reaction proceeds by protonation of ethylene to form the surface ethoxide and then C--C bond formation between the ethoxide and the second ethylene molecule to give the butoxide product. The first step is rate-determining and has an activation barrier of 30.06 kcal mol(-1). The ethoxide intermediate is rather reactive and readily reacts with another ethylene molecule with a smaller activation energy of 28.87 kcal mol(-1). In the concerted mechanism, the reaction occurs in one step of simultaneous protonation and C--C bond formation. The activation barrier is calculated to be 38.08 kcal mol(-1). Therefore, the stepwise mechanism should dominate in ethylene dimerization.  相似文献   

10.
The mechanism for thiol/disulfide exchange has been studied with high-level theoretical calculations. Free energies, transition structures, charge densities, and solvent effects along the reaction pathway have been determined for the first time. Mechanistic results agree with experimental data, and support the idea that the thiolate is the reacting species and that the reaction indeed proceeds through an uncomplicated S(N)2 transition state. The transition structures have the charge density evenly concentrated in the attacking and leaving sulfur atoms. The charge densities allow us to rationalize the solvent effects. As transition structures have the charge density more widely distributed than reactants, hydrophobic environments catalyze the reaction. The effect can be so dramatic that disulfide exchange inside the active site of ribonucleotide reductase is estimated to be catalyzed 10(3) times faster than the reaction in water. It was also found that attack by thiol is much faster than previously assumed, if mediated through water chains. Although the present results, as well as experimental data, still suggest that thiolate is the main reaction species, water-mediated thiol attack is almost kinetically competitive, and can eventually become competitive under specific experimental conditions.  相似文献   

11.
By means of first principle calculations we have investigated a set of molecules that are presumed to contain carbon-sulfur triple bonds, namely HCSOH, H(3)SCH, cis-FCSF, F(3)CCSF(3), and F(5)SCSF(3). For HCSOH, FCSF, and H(3)SCH we used the CCSD(T) methodology and the correlation-consistent basis sets. On the other hand, F(3)CCSF(3) and F(5)SCSF(3) were studied at the B3LYP, M06-2X, MP2, and G3 levels of theory. We found that none of these molecules display a carbon-sulfur adiabatic bond dissociation energy (ABDE) as strong as diatomic CS (170.5 kcal mol(-1)), or a diabatic bond dissociation energy (DBDE) larger than the one found in SCO (212.0 kcal mol(-1)), although the DBDE of FCSF comes quite close at 208.3 kcal mol(-1). The CS ABDEs of F(3)CCSF(3), F(5)SCSF(3), and H(3)SCH are comparable to that of a single C-S bond. In contrast with the experimental results, F(3)CCSF(3) and F(5)SCSF(3) are predicted to be linear with C(3v) and C(s) symmetry, respectively, at the B3LYP/6-311+G(3df,2p) level. MP2/6-311+G(2df,2p) calculations support the C(3v) symmetry for F(3)CCSF(3), despite F(5)SCSF(3) not having a perfect linear structure; the CSC angle is 174.6°, which is nearly 20° larger than the experimental value. The analysis of the carbene structures of HCSOH and H(3)SCH revealed that they are not significant, because the triplet state is dissociative in these cases. However, for F(3)CCSF(3) and F(5)SCSF(3) , the carbene triplet states lie 0.81 and 0.77 eV above the singlet state, respectively. In the same vein, our investigation supports the presence of a strong double bond for HCSOH. The conflicting evidence available for F(3)CCSF(3) and F(5)SCSF(3) makes it very difficult to determine the nature of the CS bonds. However, the bond dissociation energies and the singlet-triplet splittings clearly suggest that these compounds should be considered as masked sulfinylcarbenes. The analysis of the bond dissociation energies challenges the existence of a triple bond in these five molecules, but from a strictly thermodynamic standpoint, cis-FCSF is found to be the candidate most likely to exhibit triple-bond character.  相似文献   

12.
13.
The ab initio prediction of reaction rate constants for systems with hundreds of atoms with an accuracy that is comparable to experiment is a challenge for computational quantum chemistry. We present a divide‐and‐conquer strategy that departs from the potential energy surfaces obtained by standard density functional theory with inclusion of dispersion. The energies of the reactant and transition structures are refined by wavefunction‐type calculations for the reaction site. Thermal effects and entropies are calculated from vibrational partition functions, and the anharmonic frequencies are calculated separately for each vibrational mode. This method is applied to a key reaction of an industrially relevant catalytic process, the methylation of small alkenes over zeolites. The calculated reaction rate constants (free energies), pre‐exponential factors (entropies), and enthalpy barriers show that our computational strategy yields results that agree with experiment within chemical accuracy limits (less than one order of magnitude).  相似文献   

14.
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.  相似文献   

15.
The geometric and electronic structures of a series of conjugated macrocycles (phenylene-acetylene macrocycles, PAMs) have been studied theoretically with ab initio and semiempirical molecular orbital methods. The ab initio calculations at the HF/6-31G* level demonstrate that the model molecules may have a planar conformation. Bigger macrocycles, for example, 7PAM, 8PAM, and 9PAM, result in several energy minima. The boatlike conformation is the most energetically favored form. Based on the conformational analysis, a novel method for analyzing the ring-strain energy was proposed and used. In view of their potential applications as electronic materials, the electronic structures of a series of PAMs are also investigated. The LUMO-HOMO gaps of the planar PAMs show an odd-even difference behavior. In addition, the HOMOs of the planar species 3PAM, 5PAM, 7PAM, and 9PAM are doubly degenerated.  相似文献   

16.
17.
18.
The reactions of solutions of TlPF(6) and OPPh(3) in tetrahydrofuran or acetone with NBu(4)[AuR(2)] (R=C(6)Cl(5), C(6)F(5)) gave the new complexes [Au(C(6)Cl(5))(2)](2)[Tl(OPPh(3))][Tl(OPPh(3))(L)] (L=THF (1), acetone (2)) and the previously reported [Tl(OPPh(3))(2)][Au(C(6)F(5))(2)] (3). The crystal structures of complexes 1 and 2 display extended unsupported chains with short intermolecular interactions between alternating gold(I) and thallium(I) centres. Moreover, the Tl(I) centres show two different types of geometrical environments, such as pseudotetrahedral and distorted trigonal-bipyramidal, due to the presence of solvent molecules that act as ligands in the solid-state structure. Quasirelativistic and nonrelativistic ab initio calculations were performed to study the nature of the intermetallic Au(I)-Tl(I) interactions and are consistent with the presence of a high ionic contribution (80 %) and dispersion-type (van der Waals) interaction with a charge-transfer contribution (20 %) when relativistic effects are taken into account. All complexes are luminescent in the solid state at room temperature and at 77 K. Complexes 1 and 2 show site-selective excitation, probably due to the different environments around the Tl(I) centres. The DFT and time-dependent (TD)-DFT calculations are in agreement with the experimental excitation spectra for all complexes and confirm the site-selective excitation behaviour as a function of the Tl(I) geometrical environment.  相似文献   

19.
A mechanistic and kinetic study of the OH.‐initiated oxidation of benzaldehyde is carried out using quantum chemical methods and classical transition state theory. We calculate the rate constant for this reaction within the temperature range of 200–350 K at atmospheric pressure. All possible hydrogen abstraction and OH. addition channels are considered and branching ratios are obtained. Tunneling corrections are taken into account for abstraction channels, assuming unsymmetrical Eckart barriers. The aldehydic abstraction is by far the most important reaction channel within the entire range of temperatures studied, especially at room temperature and lower—the temperatures relevant to atmospheric chemistry. The relative importance of all the other possible channels increases slightly with temperature. Branching ratios show that addition at the ring and abstraction of an ortho hydrogen contribute about 1 % each at about 300 K, while the branching ratio for the main reaction decreases from 99 % at 200 K to 93 % at 350 K. The results are compared with available experimental measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号