首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
金属离子导致的丝素蛋白的构象转变   总被引:14,自引:0,他引:14  
蚕丝和蜘蛛丝的优异力学性能一直是科学家们关注的课题^[1-3]。近年来,在蚕丝蛋白结构及其构象方面的研究取得了许多进展^[3-5]。在蚕的腺体中丝素蛋白的构象为silk I(主要是无规线团为主,还有少量的β-转角,α螺旋等),而在纤维状的丝中为silk Ⅱ(主要是β折叠)。金属离子在蚕叶丝过程中的作用也一直是一个人们关心的问题。Chen等^[6]在研究丝胶(包附在丝素蛋白表层的另外一种蛋白)时发现,在一定pH条件下,Ni^2 离子通过四配位的螯合作用诱导丝素蛋白β折叠的形成。并且,Viney等^[7]根据电感耦合等离子体(ICP-MS)技术推测Ca^2 的增加能使β折叠的形成加速。  相似文献   

2.
pH值对丝素蛋白构象转变的影响   总被引:8,自引:0,他引:8  
模仿家蚕吐丝过程中伴随丝素蛋白自然脱水的纤维化过程,研究了再生丝素蛋白在各种pH值的磷酸盐缓冲溶液体系中自然干燥脱水成膜后的构象转变.利用激光拉曼散射光谱及其二维相关光谱,定性分析了丝素蛋白酰胺区(1600~1700cm-1)散射峰的相关组成及结构.在此基础上,利用13CCP-MAS固体核磁共振谱对丝素蛋白丙氨酸Cβ峰(δ14.5~22)进行了解析拟合.从而确定了体系中与Silk及Silk构象相关的组成含量与pH值的关系.结果表明,pH=5.2的酸性溶液有利于蚕丝丝素蛋白从Silk向Silk构象转变,而中性与碱性溶液(pH=6.9和8.0)则对丝素蛋白的构象转变影响甚小.  相似文献   

3.
Fibrous proteins unlike globular proteins, contain repetitive amino acid sequences, giving rise to very regular secondary protein structures. Silk fibroin from a wild silkworm, Samia cynthia ricini, consists of about 100 repeats of alternating polyalanine (poly-Ala) regions of 12-13 residues in length and Gly-rich regions. In this paper, the precise structure of the model peptide, GGAGGGYGGDGG(A)(12)GGAGDGYGAG, which is a typical repeated sequence of the silk fibroin, was determined using a combination of three kinds of solid-state NMR studies; a quantitative use of (13)C CP/MAS NMR chemical shift with conformation-dependent (13)C chemical shift contour plots, 2D spin diffusion (13)C solid-state NMR under off magic angle spinning and rotational echo double resonance. The structure of the model peptide corresponding to the silk fibroin structure before spinning was determined. The torsion angles of the central Ala residue, Ala(19), in the poly-Ala region were determined to be (phi, psi) = (-59 degrees, -48 degrees ) which are values typically associated with alpha-helical structures. However, the torsion angles of the Gly(25) residue adjacent to the C-terminal side of the poly-Ala chain were determined to be (phi, psi) = (-66 degrees, -22 degrees ) and those of Gly(12) and Ala(13) residues at the N-terminal of the poly-Ala chain to be (phi, psi) = (-70 degrees, -30 degrees ). In addition, REDOR experiments indicate that the torsion angles of the two C-terminal Ala residues, Ala(23) and Ala(24), are (phi, psi) = (-66 degrees, -22 degrees ) and those of N-terminal two Ala residues, Ala(13) and Ala(14) are (phi, psi) = (-70 degrees, -30 degrees ). Thus, the local structure of N-terminal and C-terminal residues, and also the neighboring residues of alpha-helical poly-Ala chain in the model peptide is a more strongly wound structure than found in typical alpha-helix structures.  相似文献   

4.
环氧化合物与丝素蛋白化学交联凝胶的结构   总被引:4,自引:0,他引:4  
对丝素蛋白水溶液与环氧化合物交联剂(PGDE)反应制备的丝素凝胶(CFG)的结构进行了研究.用位相差显微镜观察到CFG具有整体均一的形态结构,而未经PGDE交联的纯丝素凝胶(FG)为颗粒聚集结构.CFG的红外吸收光谱在1104cm-1处出现PGDE分子中烷醚的吸收峰,而没有出现PGDE两端环醚的特征吸收峰,显示PGDE已经开环交联在丝素蛋白上.氨基酸分析结果显示,酪氨酸、组氨酸和赖氨酸的含量与反应前相比明显减少,PGDE在这些位点与丝素蛋白发生了交联反应.固体13CNMR谱观察到酪氨酸羟苯基上的碳发生了化学位移,进一步证实了酪氨酸残基与PGDE发生了化学交联.研究表明,PGDE与丝素蛋白交联形成了分子间交联网络结构,从而使CFG成为较为匀质的凝胶,并有较好的透明度和柔韧性.  相似文献   

5.
在制备具有良好力学性能的蚕丝纤维/丝蛋白复合材料的基础上,采用力学测试、扫描电镜以及广角X-射线衍射等手段,考察了溴化锂预处理和甲醇后处理这两种方法对蚕丝纤维/丝蛋白界面性能的影响.力学测试的结果表明,在相同纤维含量(如20 wt%)的情况下,采用6 mol L-1溴化锂对定向排列的蚕丝纤维预处理10 min,所得的蚕...  相似文献   

6.
The dynamical behavior of the Bombyx mori silk fibroin chain and of absorbed water in silk fiber, film, and powder has been studied by 1H pulsed nuclear magnetic resonance (NMR). Segmental motions do not occur and only the rapid rotation of the methyl groups of alanine residues is observed from ?120 to 130°C. This is independent of the conformation or form of the silk fibroin samples. Magnetization of dry silk fibroin by the solid-echo method shows a single Gaussian decay, while two components are observed in the solid-echo signals of films containing 6–10 w/w% water. An immobile component with a T2 value of 11 μs is attributed to silk fibroin, and the mobile component to bound water. The T2 of the latter varies from 50 to 200 μs, depending on the sample. The dynamical behavior of water trapped in the film is discussed on the basis of these T2 values.  相似文献   

7.
Dynamic mechanical and dielectric properties of amorphous regenerated films of silk fibroin were studied as a function of temperature. A mechanical loss tangent peak at about 175°C may be due to the segmental motion of the main chains in the amorphous silk fibroin film. The dynamic modulus of the amorphous silk fibroin increased at 185°C due to the crystallization of the silk fibroin. Dielectric loss tangent peaks were observed at about ?40°C and 175°C at 1 kHz. The former is ascribed to the local motion of the amorphous silk fibroin with absorbed water, while the latter seems to originate from the segmental motion of the main chains and the crystallization of silk fibroin.  相似文献   

8.
倪莉  陶冠军  戴军  王璋  许时婴 《色谱》2001,19(3):222-225
 可溶性丝素粉末经碱性蛋白酶Alcalase水解后 ,其酶解产物对血管紧张素转化酶 (ACE)的活性有很强的抑制作用。采用凝胶过滤色谱SephadexG 15和反相高效液相色谱 (RP HPLC)对水解度为 2 0 %的酶解产物进行分离纯化 ,利用质谱鉴定其中一种ACE抑制剂是肽 ,其结构为Gly Tyr。  相似文献   

9.
丝素纳米颗粒的制备及应用于L-天冬酰胺酶的固定化   总被引:2,自引:0,他引:2  
丝素蛋白纤维溶于高浓度中性盐溴化锂溶液或氯化钙-乙醇-水三元溶剂中, 经过透析和纯化可以制成3种液态丝素. SDS-PAGE分析结果表明, 其分子量分布范围明显不同. 应用能与水混溶的有机溶剂如丙酮等可将这种丝素制成丝素纳米颗粒, 用SEM观察到丝素纳米颗粒粒径分布范围为50~120 nm. 以戊二醛为交联剂, 将治疗急性淋巴性白血病常用酶制剂L-天冬酰胺酶共价结合在丝素纳米颗粒上. 酶活性分析结果表明, 由肽链断裂较少的丝素制备的纳米颗粒更适合于酶的生物结合. 酶动力学研究结果表明, 这种固定化酶活性回收率为44%, 热稳定性较游离酶有明显提高, 最适pH值范围加宽为6.0~8.0, 最适反应温度提高10 ℃; 抗胰蛋白酶水解能力明显增强. 结果表明, 丝素纳米颗粒与丝素蛋白膜一样, 是一种酶固定化的良好载体, 在药物缓释系统方面具有潜在的研究和开发价值.  相似文献   

10.
Silk fibroin, which has many characteristic properties such as low inflammation reaction, biodegradation, suppleness, good antithrombogenic details, biocompatibility and high tensile strength is a very good candidate for biomedical applications. Electrospinning procures high surface area, porous, nanofiber dimension fiber generation, which is a plain method. An experimental study was carried out to produce nanofiber structure from silk fibroin by electrospinning and the electrospinning parameters for the spinning of uniform, continuous and silk fibroin fibers were optimized. As a result, the effect of variables of concentration, distance and applied voltage on the strength, thickness, surface structure, fiber diameter of nanomaterial was investigated. Then, in vitro cell viability of the silk fibroin mat was analyzed. It was seen that the strength, mat thickness, and fiber diameter increased with solution concentration rise. It was found that the values of the fiber diameter and tensile strength decreased with increasing distance. It was determined that the effect of distance varies depending on the concentration in the mat thicknesses. The tensile strength was affected inversely proportional the applied voltage rises and distance. It was found that the fiber diameter values decreased together with increasing applied voltage. At cell viability of silk fibroin mat was occurred high cell viability after 24 h, but it was obtained low cell viability at the 48th h.  相似文献   

11.
The structure of silk fibroin from a wild silkworm, S. c. ricini, the amino acid sequence of which consists of repeated poly-Ala and Gly-rich regions, was examined by using solution and solid-state NMR methods. The structural transition of the silk fibroin in aqueous solution was monitored by using 13C solution NMR spectroscopy as a function of temperature. The fast exchange with respect to the chemical shift between the helix and coil conformations was observed in the poly-Ala region and the slow conformational change from alpha-helix to random coil was observed for the Gly residue adjacent to the N-terminal Ala residue of the poly-Ala region. The torsion angles of several Ala and Gly residues in the model peptide, GGAGGGYGGDGG(A)12GGA-GDGYGAG, were determined by the conformation-dependent 13C chemical shifts, rotational echo double resonance (REDOR) and 2D spin-diffusion NMR methods. The solid-state NMR analysis leads to the precise silk structure before spinning, where the poly-Ala sequence takes a typical alpha-helix pattern with a tightly winded helical structure at both terminal regions of the poly-Ala sequence. This is expected to stabilize the alpha-helical structure of the poly-Ala region in S. c. ricini silk fibroin from the silkworm.  相似文献   

12.
桑蚕丝素-RGD融合蛋白的固态结构及其细胞粘附性分析   总被引:4,自引:0,他引:4  
姚菊明  祝永强  李媛  励丽 《化学学报》2006,64(12):1273-1278
利用基因工程方法把含有短肽RGD的氨基酸序列连接到桑蚕丝素蛋白的结晶序列GAGAGS上, 通过调节DNA的聚合度, 合成了具有[TGRGDSPA(GVPGV)2GG(GAGAGS)3AS]n一级结构、不同分子量大小的桑蚕丝素-RGD融合蛋白, 并且通过在M9培养基中添加[3-13C]Ala的方法进行融合蛋白的稳定同位素标记. 13C CP/MAS NMR结果显示, 融合蛋白中的GAGAGS部分具有与天然桑蚕丝素结晶部分相同的分子结构, 即Silk I处理后为均一的分子结构, 而Silk II处理后为不均一的分子结构, 它包含了三种不同的结构成分. 另一方面, 通过对小鼠成纤维细胞BALB/3T3在不同蛋白材料载体上的粘附和增殖性能的测定结果显示, 融合蛋白对细胞的增殖性能与天然胶原蛋白相近, 但表现出了比胶原蛋白更好的细胞粘附性能. 该研究结果显示, 如果对该桑蚕丝素-RGD融合蛋白进行适当加工, 可能适合于组织工程支架材料的应用.  相似文献   

13.
In this study we applied Rheo-NMR to investigate the structural change of Bombyx mori silk fibroin in aqueous solution under shear. Monitoring the time dependence of 1H solution NMR spectra of silk fibroin subjected to constant shear strain, signal intensities of random coil decreased suddenly during shear while peaks from beta-sheet structure did not arise in the solution spectra. After these experiments, an aggregate of silk was found in the Couette flow cell and its secondary structure was determined as beta-sheet by 13C solid-state NMR. In conclusion the moderate shear applied here triggered the change in the secondary structure.  相似文献   

14.
Physical and chemical structure, as well as thermal behavior of solution-cast regenerated films, prepared from tussah (Antheraea pernyi) silk fibroin, were compared with those of solution-cast native films, in order to ascertain whether treatment (degumming, dissolution) used for preparation affected their properties. Regenerated fibroin films exhibited a higher thermal stability than native ones, as shown by differential scanning calorimetry, thermomechanical analysis, and dynamic mechanical behavior. Glass transition temperature and other relevant thermal transitions of the regenerated silk specimen shifted to higher temperatures compared with those of native specimen. Molecular conformation and crystalline structure did not show significant differences between the two kinds of silk films. Amino acid composition and molecular weight, however, distribution changed markedly after dissolving tussah silk fibroin fiber in concentrated LiSCN in polypeptide size was the main features for the regenerated silk fibroin. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Conductive polymers are interesting materials for a number of biological and medical applications requiring electrical stimulation of cells or tissues. Highly conductive polymers (polypyrrole and polyaniline)/Antheraea mylitta silk fibroin coated fibers are fabricated successfully by in situ polymerization without any modification of the native silk fibroin. Coated fibers characterized by scanning electron microscopy confirm the silk fiber surface is covered by conductive polymers. Thermogravimetric analysis reveals preserved thermal stability of silk fiber after coating process. X‐ray diffraction of degummed fiber diffraction peaks at around 2θ = 20.4 and 16.5 confirms the preservation of the β‐sheet structure typical of degummed silk II fibers. This phenomenon implies that both polypyrrole and polyaniline chains form interactions with peptide linkages in degummed fiber macromolecules, without significantly disrupting protein assembly. Fourier transform infrared spectroscopy of coated fibers indicates hydrogen bonding and electrostatic interactions exist between silk fibroin macromolecules and conductive polymers. Resulting fibers display good conductive properties compared to corresponding conjugated polymers. In vitro analysis (live/dead assay) of the behavior of human immortalized keratinocytes (HaCaTs) on coated fibers demonstrates improved cell‐adhesive properties and viability after polymers coating. Hence, polypyrrole‐ and polyaniline‐coated A. mylitta silk fibers are suitable for application in cell culture and for tissue engineering, where electrical conduction properties are required.

  相似文献   


16.
Controlled deposition of calcium carbonate crystals can be obtained on degummed Bombyx mori silk fibers through the use of a silk fibroin solution; aragonite crystallites are found on the surface of the fiber with consistent orientation along the longitudinal axis; the results indicate that the combination of the ordered surface structure on the silk fiber and the directing-effect of silk fibroin solution are the key factors in the orientative deposition process of the mineral.  相似文献   

17.
For highly porous form such as sponges or scaffolds, the induction of the β-sheet formation of silk fibroin to make the water-stable materials usually results in their high shrinkage leading to a difficulty in controlling shape and size of materials. Thus, the objective of this study was to improve dimensional stability of silk fibroin sponge by incorporating chitin whiskers as nanofiller. Chitin whiskers exhibited the average length and width of 427 and 43 nm, respectively. Nanocomposite sponges at chitin whiskers to silk fibroin weight ratio (C/S ratio) of 0, 1/8, 2/8, or 4/8 were prepared by using a freeze-drying technique. The dispersion of chitin whiskers embedded in the silk fibroin matrix was found to be homogeneous. The presence of chitin whiskers embedded into silk fibroin sponge not only improved its dimensional stability but also enhanced its compression strength. Regardless of the chitin whisker content, SEM micrographs showed that all samples possessed an interconnected pore network with an average pore size of 150 μm. To investigate the feasibility of the nanocomposites for tissue engineering applications, L929 cells were seeded onto their surfaces, the results indicated that silk fibroin sponges both with and without chitin whiskers were cytocompatible. Moreover, when compared to the neat silk fibroin sponge, the incorporation of chitin whiskers into the silk fibroin matrix was found to promote cell spreading.  相似文献   

18.
The impact of physiological factors on silk fibroin solution properties was studied. Specifically, the impact of fibroin concentration, protein purity, cation type and concentration, and pH on aqueous solution viscosity, shear behavior, and surface tension were assessed in the context of silk protein assembly. The results demonstrate that in vitro results could be correlated to in vivo processing events during silk spinning. Rheological properties with reference to the amphiphilic block structure of the protein are described, pH dependency of shear response was quantitatively correlated to the predicted pI values of the fibroin protein, and cooperativity among environmental factors such as pH and salts was identified. Stabilization of silk fibroin solution states by calcium was identified as a mode to control shear sensitivity of the fibroin solution. The cooperativities identified suggest tight control of fibroin aqueous solution rheological properties to gain a window of protection against premature crystallization of the fibroin during processing, assuring safe storage, transport, and finally successful fiber spinning.  相似文献   

19.
The processes of fiber formation by the fibroin of natural silk have been studied by the methods of birefringence in a longitudinal hydrodynamic field and optical rotatory dispersion. The experiments were performed with the direct drawing of a fiber from the secretion of the silk glands of the silkwormBombyx mori. The position of appearance of a longitudinal hydrodynamic field within the gland has been detected and experimental results have been obtained which permit an evaluation of the critical condition for the - structural transition of the fibroin chains.Institute of the Chemistry and Physics of Polymers, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (3712) 44 26 61. Translated from Khimiya Prirodnykh Soedinenii, No. 4, pp. 623–627, July–August, 1997.  相似文献   

20.
Microneedles are a promising transdermal drug delivery system that has the advantages of minimal invasiveness, painlessness, and on-demand drug delivery compared with commonly used medical techniques. Natural resources are developed as next-generation materials for microneedles with varying degrees of success. Among them, silk fibroin is a natural polymer obtained from silkworms with good biocompatibility, high hardness, and controllable biodegradability. These properties provide many opportunities for integrating silk fibroin with implantable microneedle systems. In this review, the research progress of silk fibroin microneedles in recent years is summarized, including their materials, processing technology, detection, drug release methods, and applications. Besides, the research and development of silk fibroin in a multidimensional way are analyzed. Finally, it is expected that silk fibroin microneedles will have excellent development prospects in various fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号