首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of the metals in the Pt−Pd/ZrO2 and Pt−Pd/SO4/ZrO2 systems was studied by DRIFT spectroscopy. After reduction of Pt−Pd/ZrO2 at 100 °C, the states of the metals are mainly Pt0 and Pd0 with a minor admixture of positively charged forms of Pt+ or Pd2+. An increase in the temperature of reduction leads to the formation of a bimetallic alloy. In the Pt−Pd/SO4/ZrO2 system, the effects of alloy formation and the interaction of the surface SO4 groups superimpose. At low reduction temperatures, the surface SO4 groups interact mainly with palladium. The influence of the surface sites on both supported metals increases with increasing reduction temperature. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1265–1270, July, 1999.  相似文献   

2.
The adsorption of SO2 on alumina used in the aluminium industry, the so-called smelter-grade alumina, was studied in the temperature range 15–120°C. It was found that at temperatures lower than 40°C, sulphur dioxide was bonded to alumina reversibly by physical forces, and the adsorption could be described satisfactorily by the Langmuir adsorption isotherm. The heat of adsorption was estimated to be −33 kJ mol−1. At temperatures ranging from 80°C to 120°C, which prevail in dry scrubbers in the aluminium industry, the heat of adsorption was determined to be −56 kJ mol−1. When SO2 was adsorbed at temperatures higher than 80°C, about 30 % of the SO2 could not be desorbed even if the samples were heated up to 250°C. In the presence of SO2 and oxygen, the formation of sulphate was observed at temperatures above 90°C.  相似文献   

3.
Pt/SO4 2−−ZrO2 calcined at 873 K shows the same catalytic activity forn-hexane isomerization as the calcined and reduced sample. A platinum reduction peak did not appear in the TPR profile and the presence of Pt0 was detected by XPS on the only calcined Pt/SO4 2−−ZrO2. Nevertheless, this calcined material does not show hydrogen chemisorption and cyclohexane dehydrogenation activity.  相似文献   

4.
Combustion of dilute propane (0.9 mol%) over Mn-doped ZrO2 catalysts prepared using different precipitating agents (viz. TMAOH, TEAOH, TPAOH, TBAOH and NH4OH), having different Mn/Zr ratios (0.05—0.67) and calcined at different temperatures (500—800°C), has been thoroughly investigated at different temperatures (300—500°C) and space velocities (25,000–100,000 cm3 g−1 h−1) for controlling propane emissions from LPG-fuelled vehicles. Mn-doped ZrO2 catalyst shows high propane combustion activity, particularly when its ZrO2 is in the cubic form, when its Mn/Zr ratio is close to 0.2 and when it is prepared using TMAOH as a precipitating agent and calcined at 500—600°C. Pulse reaction of propane in the absence of free-O2 over Mn-doped ZrO2 (cubic) and Mn-impregnated ZrO2 (monoclinic) catalysts has also been investigated for studying the relative reactivity and mobility of the lattice oxygen of the two catalysts. Both reactivity and mobility of the lattice oxygen of Mn-doped ZrO2 are found to be much higher than that of Mnimpregnated ZrO2. Propane combustion over Mn-doped ZrO2 catalyst involves a redox mechanism  相似文献   

5.
Surface titrations were carried out on suspensions of monoclinic ZrO2 from 25 to 290 °C slightly above saturation vapor pressure at ionic strengths of 0.03, 0.1 and 1.0 mol⋅kg−1(NaCl). A typical increase in surface charge was observed with increasing temperature. There was no correlation between the radius of the cations, Li+, Na+, K+ and (CH3)4N+, and the magnitude of their association with the surface. The combined results were treated with a 1-pKa MUSIC model, which yielded association constants for the cations (and chloride ion at low pH) at each temperature. The pH of zero-point-charge, pHzpc, decreased with increasing temperature as found for other metal oxides, reaching an apparent minimum value of 4.1 by 250 °C. Batch experiments were performed to monitor the concentration of LiOH in solutions containing suspended ZrO2 particles from 200 to 360 °C. At 350 and 360 °C, Li+ and OH ions were almost totally adsorbed when the pressure was lowered to near saturation vapor pressure. This reversible trend has implications not only to pressure-water reactor, PWR, operations, but is also of general scientific and other applied interest. Additional experiments probed the feasibility that boric acid/borate ions adsorb reversibly onto ZrO2 surfaces at near-neutral pH conditions as indicated in earlier publications. Electronic Supplementary Material  The online version of this article () contains supplementary material, which is available to authorized users.  相似文献   

6.
A series of SO42−-ZrO2-Al2O3 oxide supports containing from 18.8 to 89.1 wt % alumina was prepared by mixing sulfated zirconia hydrate (weight ratio ZrO2: H2SO4 = 9 : 1) and pseudoboehmite followed by calcination at 650°C. For the subsequent use of the supports to optimize the acid and hydrogenating properties of bifunctional hydroisomerization catalysts of the Pt/SO42−-ZrO2-Al2O3 type, the formation of these catalysts in the course of thermal treatment and their texture characteristics and phase composition were studied. It was found by chemical and thermogravimetric analysis that the addition of pseudoboehmite to sulfated zirconia hydrate resulted in a decrease in sulfur losses in the course of support production from 55.0 to 2.0% with respect to its nominal amount. As the alumina content was increased from 18.8 to 89.1 wt %, the specific surface area and the pore volume of the support increased nonadditively with respect to mechanical mixtures of sulfated zirconia and γ-alumina (from 155 to 197 m2/g and from 0.24 to 0.52 cm3/g, respectively); in this case, a maximum deviation was 18–21%. The experimental results can be explained by chemical interactions between the initial components of the supports. The results of thermogravimetric and X-ray diffraction analysis suggest that the reaction products are sulfated alumina and a sulfated ZrO2-Al2O3 solid solution.  相似文献   

7.
A highly active superacid of 2–4 wt.% Ru-sulfated ZrO2 for the isomerization of butane to isobutane was obtained by exposing RuOx/ZrO2 to 1 N H2SO4 followed by calcining in air at 550°C. The RuOx/ZrO2 was prepared by impregnating zirconium hydroxide with a solution of RuCl3 followed by drying at 300°C. The catalyst was much more active than the superacid of sulfated zirconia, the temperature difference to show the same conversion between both catalysts being more than 145°C.  相似文献   

8.
 The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  相似文献   

9.
The densities of KCl and K2SO4 were measured from dilute solutions to saturation from 5 to 95°C. The data were combined with literature data to produce density and apparent molal volume, Vφ, equations from 0 to 100°C and to saturation. The standard deviations of the density equations were 30×10−6 g-cm−3 and 32×10−6 g-cm−3, respectively, for KCl and K2SO4. Pitzer equations were used to fit the Vφ data. The resulting infinite dilute partial molal volumes, Vo, were in reasonable agreement with literature data. The densities of the mixtures of the six combinations of the salts KCL, K2SO4 NaCl and Na2SO4 were measured at I=2.0 and t=5, 25, 55 and 95°C. The resulting volumes of mixing were fitted to equations of the form
  相似文献   

10.
Catalysis and deactivation of SO42−/ZrO2 solid acid on the alkylation of benzene and 1-dodecene were studied by the characterization of XRD, BET, IR, TG/DTA, and NH3-TPD techniques and the determination of the 1-dodecene conversion, the yield of dodecylbenzene and the selectivity of linear alkylbenzene respectively. In addition, some treatment methods, such as the extraction with benzene or THF as solvent, and the calcinations with or without the dipping of H2SO4 in air, were respectively used to recover the activity of deactivated catalyst. The results indicate that SO42−/ZrO2 solid acid shows higher catalytic activity for the alkylation of benzene and 1-dodecene with nearly 100% of 1-dodecene conversion and more than 80% of dodecylbenzene yield, and higher selectivity of 2-LAB. The activity of catalyst for the alkylation of benzene is in proportion to the content and the strength of medium acid site. However, the distinct deactivation of catalyst was also obversed in the alkylation. According to the characterization of deactivated catalyst, the accumulation of hydrocarbon fragment and the removal of are mainly reasons of SO42−/ZrO2 deactivation. The SO42−/ZrO2 calcinated at higher temperature is apt to deactivate. The treatment by extraction with solvent or calcinations can recover the catalytic activity of spent catalyst at a certain extent, especially calcination with the dipping of H2SO4. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 3, pp. 455–463. The article is published in the original.  相似文献   

11.
Summary.  The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  Corresponding author. E-mail: ariguib@planet.tn Received October 16, 2002; accepted (revised) December 3, 2002 Published online April 24, 2003 RID="a" ID="a" Dedicated to Prof. Dr. Heinz Gamsj?ger on the occasion of his 70th birthday  相似文献   

12.
Ion exchange equilibrium constant (K) for Cl/Br and Cl/C2O42− system was studied at different temperatures from 30 to 45°C. For both uni-univalent and uni-bivalent exchange systems, the value of K increases with rise in temperature i.e., from 1.16 at 30°C to 2.95 at 45°C for Cl/Br system and 19.5 at 30°C to 30.0 at 45°C for Cl/C2O42− system indicating the endothermic ion exchange reaction. The difference in K values at the same temperature for the two was related to the ionic charge of exchangeable ions in the solution. The article is published in the original.  相似文献   

13.
Determination of ion-exchange equilibrium constant (K) for Cl/I and Cl/C2O42− system was studied at different temperatures from 25 to 45°C and by varying concentration of iodide and oxalate ion solution. For both uni-univalent and uni-bivalent exchange systems, using 0.5 g of ion-exchange resin DUOLITE A-116 (in chloride form), the value of K increases with rise in temperature i.e., from 13.0 at 25°C to 19.05 at 45°C for Cl/I system and 33.0 at 25°C to 63.0 at 45°C for Cl/C2O42− system indicating the endothermic ion-exchange reaction. The difference in K values at the same temperature for the two was related to the ionic charge of exchangeable ions in the solution.  相似文献   

14.
ZrO2 is considered a huge-gap semiconductor (band gap ≈ 5 eV). To improve the visible-light photocatalytic activities of ZrO2, an efficient Cr, SO4 2? co-doped ZrO2 photocatalyst was synthesized by the simple impregnation method followed by calcination at different calcination temperatures (300, 400, 500, and 600 °C) for 3 h. The synthesized photocatalysts were characterized by x-ray diffraction, transmission electron microscopy analysis, scanning electron microscopy analysis, energy dispersive X-ray spectroscopy analysis, FT-IR spectroscopic technique, potentiometric titration and UV–Vis spectroscopy analysis. ZrO2 co-doped with Cr and SO4 2? shows more efficiency than SO4 2?-doped ZrO2 in several aspects like surface structure, decreasing electron–hole recombination and band gap energy. The photodegradation of methylene blue dye for SO4 2?-doped ZrO2 and Cr, SO4 2?-co-doped ZrO2 has been investigated. The photocatalytic reaction confirmed that the co-doped ZrO2 photocatalyst showed higher photocatalytic activity than mono-doped ZrO2.  相似文献   

15.
A ruthenium-sulfur carbonyl cluster electrocatalyst, Ru x S y (CO) n , was synthesized by pyrolysis of Ru3(CO)12 and elemental sulfur in a sealed ampoule at 300 °C. The pyrolyzed compound was characterized by DSC, FT-IR, XRD and SEM (EDX) techniques. The electrocatalytic activity and kinetic parameters for the molecular oxygen reduction were determined by a rotating ring-disk electrode (RRDE) in a 0.5 M H2SO4 solution at 25 °C. The cathodic polarization indicates two Tafel slopes: −0.124 ± 0.002 V dec−1 at low and −0.254 ± 0.003 V dec−1 at high overpotentials, and first-order kinetics with respect to O2 concentration. From the analysis of Levich plots and RRDE results, the oxygen reduction on Ru x S y (CO) n was determined to proceed mostly via a multielectron transfer path (4e) to water formation ( >94%). Received: 4 March 1999 / Accepted: 26 May 1999  相似文献   

16.
This paper described the determination of p-nitroaniline in a double organic substrate oscillating system of tartrate-acetone-Mn2+-KBrO3-H2SO4. Under the optimum conditions, temperature was chosen as a control parameter to design the bifurcation point and proposed a convenient method for determination of p-nitroaniline. Results showed that the system consisting of 3.5 mL 0.06 mol L−1 tartrate, 4.0 mL 0.7 mol L−1 H2SO4, 1.5 mL 1.5×10−4 mol L−1 MnSO4, 4.0 mL 0.4 mol L−1 acetone and 7.0 mL 0.05 mol L−1 KBrO3 was very sensitive to the surrounding at 33.5°C. A good linear relationship between the potential difference and the negative logarithm concentration of p-nitroaniline was obtained to be in the range of 2.50×10−7∼3.75×10−5 mol L−1 with a lower detection limit of 2.50×10−8 mol L−1.   相似文献   

17.
An O-bonded sulphito complex, Rh(OH2)5(OSO2H)2+, is reversibly formed in the stoppedflow time scale when Rh(OH2) 6 3+ and SO2/HSO 3 buffer (1 <pH< 3) are allowed to react. For Rh(OH2)5OH2++ SO2 □ Rh(OH2)5(OSO2H)2+ (k1/k-1), k1 = (2.2 ±0.2) × 103 dm3 mol−1 s−1, k1 = 0.58 ±0.16 s−1 (25°C,I = 0.5 mol dm−3). The protonated O-sulphito complex is a moderate acid (K d = 3 × 10−4 mol dm−3, 25°C, I= 0.5 mol dm−3). This complex undergoes (O, O) chelation by the bound bisulphite withk= 1.4 × 10−3 s−1 (31°C) to Rh(OH2)4(O2SO)+ and the chelated sulphito complex takes up another HSO 3 in a fast equilibrium step to yield Rh(OH2)3(O2SO)(OSO2H) which further undergoes intramolecular ligand isomerisation to the S-bonded sulphito complex: Rh(OH2)3(O2SO)(OSO2)- → Rh(OH2)3(O2SO)(SO3) (k iso = 3 × 10−4 s−1, 31°C). A dinuclear (μ-O, O) sulphite-bridged complex, Na4[Rh2(μ-OH)2(OH)2(μ-OS(O)O)(O2SO)(SO3) (OH2)]5H2O with (O, O) chelated and S-bonded sulphites has been isolated and characterized. This complex is sparingly soluble in water and most organic solvents and very stable to acid-catalysed decomposition  相似文献   

18.
SiO2/ZrO2/C carbon ceramic material with composition (in wt%) SiO2 = 50, ZrO2 = 20, and C = 30 was prepared by the sol–gel-processing method. A high-resolution transmission electron microscopy image showed that ZrO2 and the graphite particles are well dispersed inside the matrix. The electrical conductivity obtained for the pressed disks of the material was 18 S cm−1, indicating that C particles are also well interconnected inside the solid. An electrode modified with flavin adenine dinucleotide (FAD) prepared by immersing the solid SiO2/ZrO2/C, molded as a pressed disk, inside a FAD solution (1.0 × 10−3 mol L−1) was used to investigate the electrocatalytic reduction of bromate and iodate. The reduction of both ions occurred at a peak potential of −0.41 V vs. the saturated calomel reference electrode. The linear response range (lrr) and detection limit (dl) were: BrO3 , lrr = 4.98 × 10−5–1.23 × 10−3 mol L−1 and dl = 2.33 μmol L−1; IO3 , lrr = 4.98 × 10−5 up to 2.42 × 10−3 and dl = 1.46 μmol L−1 for iodate.  相似文献   

19.
A method is described for construction of an amperometric xanthine biosensor based on graphite rod modified through adsorption of xanthine oxidase. Enzymatically produced H2O2 from xanthine was split into 2H+ + O2 + 2e− at 0.6 V and the current was measured, which was directly proportional to xanthine concentration ranging from 1 ° 10−7 to 6 ° 10−7 M with a detection limit of 1 ° 10−7 M. The biosensor exhibited optimum response within 35 sec at pH 7.0 and 35°C. It was employed for determination of xanthine in tea leaves (0.9 ° 10−5−2.5 ° 10−5 mmol/g), coffee powder (3.2 μmol/g) and fish meat (90 mmol/g). The content of xanthine in fish meat increased 6.5 times with its storage at room temperature during 15 days. The enzyme electrode could be reused 200 times during the span of 30 days, when stored in reaction buffer at 4°C.  相似文献   

20.
This work presents the use of sulfated tin oxide enhanced with SiO2 (SO42−/SnO2-SiO2) as a superacid solid catalyst to produce methyl esters from Jatropha curcas oil. The study was conducted using the design of experiment (DoE), specifically a response surface methodology based on a threevariable central composite design (CCD) with α = 2. The reaction parameters in the parametric study were: reaction temperature (60°C to 180°C), reaction period (1 h to 3 h), and methanol to oil mole ratio (1: 6 to 1: 24). Production of the esters was conducted using an autoclave nitrogen pressurized reactor equipped with a thermocouple and a magnetic stirrer. The maximum methyl esters yield of 97 mass % was obtained at the reaction conditions: temperature of 180°C, reaction period of 2 h, and methanol to oil mole ratio of 1: 15. The catalyst amount and agitation speed were fixed to 3 mass % and 350–360 min−1, respectively. Properties of the methyl esters obtained fell within the recommended biodiesel standards such as ASTM D6751 (ASTM, 2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号