共查询到20条相似文献,搜索用时 0 毫秒
1.
针对无人机图像帧序列具有平台高速运动,视角旋转强烈,需要实时处理等特点,提出一种基于双级旋转不变特征空间检测(粗匹配-精细匹配)与并行特征提取跟踪的无人机对地目标图像帧序列自动快速目标检测与跟踪算法。采用图像子块的平均灰度值、灰度值方差、灰度值梯度构建特征空间。通过构造图像特征空间的方法来快速筛选待匹配图像的可疑区域,删除大量的背景区域,检测算法使用全局初步匹配加局部精细匹配的方法来规避算法复杂度的缺陷。理论及实验分析表明:该算法实时性强,对图像的旋转畸变具有抵消作用,对异常情况可以恰当处理,且全局初步匹配流程具有可移植性,可以在其他图像匹配跟踪算法中充当预处理器。实验结果表明:该算法在无人机对地的情况下可以保证对地面目标的稳定跟踪,配套检测算法具有较好的实时性,满足无人机图像目标检测跟踪实时处理的需要。 相似文献
2.
3.
4.
针对复杂环境条件下的视觉跟踪问题,提出一种基于自适应非参数统计模型的彩色目标跟踪算法。利用目标和背景之间的强度差别,基于自适应核密度估计模型对运动目标进行了非参数统计建模。为了实现具有较大范围运动目标的跟踪,在充分考虑目标和背景之间的相关性前提下,采用目标特征统计的背景加权直方图对搜索区域进行了扩大。为了提高对环境变化的适应能力,根据目标和环境的变化自适应更新目标特征分布模型。通过对实际图像序列的实验,结果表明该算法能够有效跟踪运动目标,并且平均迭代次数比传统方法减少了37.28%。 相似文献
6.
针对相关滤波器的空间正则化权重与目标内容无关和跟踪过程中模型退化等问题,提出一种基于时间感知和自适应空间正则化的相关滤波跟踪算法。首先,提取灰度特征、CN(color name)特征和方向梯度直方图(HOG)特征来提升算法模型对目标的表达能力;其次,通过图像显著性检测算法获得带有目标内容信息的空间正则化初始权重;然后,在目标函数中加入自适应空间正则化项来缓解边界效应对相关滤波器的影响;最后,加入时间感知项使相关滤波器学习到相邻帧之间的信息,降低算法模型在处理不准确样本时发生过拟合的风险。在OTB-2013和OTB-2015公开数据集上对所提算法进行性能评估实验,结果表明,所提算法在多种复杂场景下都有良好的稳健性,在跟踪成功率和距离精度上优于其他对比算法,且速度达到24.2 frame/s,能满足实时性要求。 相似文献
7.
针对传统视觉显著性模型在自顶向下的任务指导和动态信息处理方面的不足,设计并实现了融入运动特征的视觉显著性模型。利用该模型提取了图像的静态特征和动态特征,静态特征的提取在图像的亮度、颜色和方向通道进行,运动特征的提取采用基于多尺度差分的特征提取方法实现,然后各通道分别通过滤波、差分得到显著图,在生成全局显著图时,提出多通道参数估计方法,计算图像感兴趣区域与眼动感兴趣区域的相似度,从而可在图像上准确定位目标位置。针对20组视频图像序列(每组50帧)进行了实验,结果表明:本文算法提取注意焦点即目标区域的平均相似度为0.87,使用本文算法能够根据不同任务情境,选择各特征通道的权重参数,从而可有效提高目标搜索的效率。 相似文献
8.
为了对图像中的显著目标进行更精确的识别,提出一种新的基于多尺度区域对比的视觉显著性计算模型。首先基于多尺度思想将图像分别分割为不同数目的超像素,对超像素内的像素颜色值取平均以生成抽象化图像;然后根据显著特征的稀少性及显著特征的聚集性,计算单一尺度下超像素颜色特征的显著性值;最后通过取各尺度超像素显著度的平均值来融合多尺度显著图,得到最终的视觉显著图。实验表明,以MSRA图库中的1 000张随机自然图片为例,该模型较现有较好的区域对比模型,显著目标识别的精确率提高了14.8%,F-Measure值提高了9.2%。与现有的算法相比,该模型提高了算法对显著目标大小的适应性,减少了背景对显著目标识别的干扰,具有更好的一致性,能更好地识别显著目标。 相似文献
9.
随着无人机技术在军事、民用等领域的广泛运用,高精度、低功耗智能无人机跟踪系统的需求也日益增多。针对无人机跟踪任务中目标尺度变化大、视野角度多变、遮挡等问题,提出了一种基于轻量级Siamese注意力网络的无人机实时跟踪算法。首先,选取易于部署在嵌入式设备中的轻量级卷积神经网络MobileNetV2作为特征提取主干网络;接着,设计通道空间协同注意力模块,增强模型的适应能力与判别能力;然后,搭载区域建议网络,通过互相关获取前景背景分类和边界框回归响应图;最后,加权融合多层响应图,调整候选区域筛选策略,计算得到更加准确的跟踪结果。在无人机跟踪数据集上的仿真实验结果表明,相对于当前主流算法SiamRPN,该算法跟踪精度提升了3.5%,能更好地应对复杂多变的场景。同时,在NIVIDA RTX 2060 GPU上,跟踪速度达到60 frame/s。 相似文献
10.
随着现在的社会发展以及经济进步,我国的科学技术方面发展迅速,特别是在技术监控方面更是突飞猛进。为了更好的对目标遮挡影响进行降低,我国在这方面主要依据自适应的技术发展背景下提出目标跟踪计算法,用来完善我国的监督控制技术。这种计算方式第一是根据对观察目标的基本外观形态进行的鉴定与跟踪,将其自身的运动量进行平均计算;其次是根据时空的运行方向与特征进行跟踪目标的计算,建立比较完善整体的运行模型,再根据这个运动模型以及整体的状态对监督目标进行检测与控制,这期间就会形成一种遮挡掩膜。对于掩膜是一种将程序数据等绘制成光刻板,在程序使用期间非常可靠,并且制造成本比较低,使用方便;最后是在不同的使用情况下将不同参数进行收集,自动的适应运动模型的运行。针对这种计算方式的实验主要是利用两种在国际上经常使用的CAVIAR、York数据进行测试,并且根据这两种数据对测试的精准度与多重目标跟踪等进行评定,检测跟踪的整体性能。通过多方面的研究表明这种方式的跟踪的性能非常好,并且还能很好的将跟踪目标的鲁棒性进行遮挡。 相似文献
11.
12.
场景自适应的跟踪特征选择机制研究 总被引:2,自引:0,他引:2
视频目标跟踪是当前计算机视觉领域中的一个关键问题。基于场景分类提出了一种视频目标特征的实时在线选择方法。离线时首先采用改进型的"空间金字塔匹配"算法完成先验视频场景的分类;然后采用不同的描述算法实现对目标和背景的特征描述,通过对数形式的方差比计算出目标和背景的特征距离;最后融合均值和熵值对特征距离进行统计分析,建立场景相关的描述子显著性排序。在此基础上,在线时利用初始帧完成测试视频的场景判定,结合当前场景下的描述子排序,实时选择最优特征,应用于粒子滤波跟踪系统,在公开视频库上进行跟踪测试,验证排序的正确性和选择机制的必要性。 相似文献
13.
14.
为了提高复杂场景中目标跟踪的稳健性,解决由光照变化、目标形变、尺度变化和遮挡等导致的目标跟踪失败问题,提出一种自适应特征融合的多尺度核相关滤波目标跟踪算法。该算法首先通过2种不同的特征分别训练2个核相关滤波器,利用这2个滤波器响应的峰值旁瓣比和相邻两帧的响应一致性获得融合权重,同时采用自适应加权的融合策略将这2个滤波器的响应结果进行融合,完成目标的位置估计;然后以此为中心进行多尺度采样,构建尺度金字塔,并通过贝叶斯估计的方法确定目标的最优尺度;最后依据目标跟踪的置信度进行跟踪模型更新,以避免模型退化。选取51组视频序列进行测试,并与近年来性能优异的目标跟踪算法进行对比。实验结果表明,所提算法能有效降低光照变化、目标形变、尺度变化和遮挡等因素影响,对测试视频序列取得了较高的跟踪精度和成功率,整体性能优于对比算法。 相似文献
15.
当目标尺度发生变化时,传统Mean-Shift跟踪算法因跟踪窗口尺寸不变容易导致跟踪目标丢失,为解决此问题,本文提出一种带宽自适应算法对目标尺度变化进行检测,从而实现模板更新.该算法分别将模板图像与当前帧目标图像分割成等间隔半径的若干同心圆,通过计算模板图像与当前帧图像不同环层之间相似性度量,根据相应环层之间相似性度量关系确定当前帧模板带宽更新参量,最后利用kalman滤波完成模板尺度更新,从而实现目标稳定跟踪.实验证明,当目标尺度发生变化时,目标模板自动更新,能够实现目标稳定跟踪;相对传统Mean-Shift跟踪算法,目标跟踪可靠性能得到了提高. 相似文献
16.
基于特征角点的目标跟踪和快速识别算法研究 总被引:14,自引:0,他引:14
提出了一种基于特征角点的目标跟踪、识别方法,其运算效率较高,且角点不易丢失。从对基于灰度的角点提取方法和基于边缘的角点提取方法的比较入手,提出建立新特征模型的必要性。随后给出了一种既能提高运算效率又能简化跟踪模型的特征角点法。选取了飞行速度为300m/s的某战机序列共11帧连续图像作为处理对象,通过在主要配置为Pentium 4、80G内存计算机的、Matlab2006a软件的环境中进行仿真,算法的运算速度可达0.7s,与其他跟踪算法相比跟踪速度较快,表明该方法是一种简洁有效的目标跟踪识别方法。 相似文献
17.
针对在复杂环境中目标尺度变化、形状变化以及场景光照变化、背景干扰等因素导致的目标跟踪稳定性下降问题,提出一种基于自适应多层卷积特征决策融合的目标跟踪算法。首先,通过卷积神经网络VGG-Net-19提取目标候选区域的多层卷积特征;其次,在相关滤波模型框架下,利用这些卷积特征构建多个弱跟踪器;接着,根据每个弱跟踪器的决策损失变化自适应地调节它们的决策权重,完成基于多层卷积特征的目标位置估计;然后,根据尺度相关滤波模型在目标中心区域进行多尺度采样,并利用相邻帧的尺度变化先验分布完成对目标尺度的预测。选取51组具有多种挑战因素的视频序列对所提算法的跟踪性能进行测试。实验结果表明,与当前主流的目标跟踪算法相比,所提算法取得了更高的跟踪精度和成功率,同时可以较好地适应目标的尺度变化,并且在目标发生形变、场景出现光照变化及背景干扰等复杂条件下仍具有较好的跟踪鲁棒性。 相似文献
18.
在目标遮挡、光线变化等复杂的跟踪环境下,现有相关滤波跟踪算法无法对目标进行长时间实时稳定跟踪。提出一种基于模型更新与快速重检测的长时跟踪算法。首先,在现有的目标定位与尺度变化的相关滤波跟踪算法基础上搭建长时目标跟踪的框架,提出加入模型监测更新机制,根据最大响应和平均峰响应相关能量值判别进入更新或重检测环节;然后,基于提取描述子特征的重检测方法,将提取特征的比特维数统一降到512进行优化,加快重检测速率。所提算法选取OTB-100中20个有代表性的序列进行测试,成功率评估均值为0.706,精确度评估均值为0.805,平均速度为48.5 frame/s;在自采集的数据集上平均准确率能达到87.65%,能够在尺度变化、遮挡等复杂情况下满足长时跟踪的准确性和实时性要求。 相似文献
19.
针对复杂场景下单个特征的稳健性差,以及目标存在背景干扰和目标遮挡时跟踪失败的问题,提出一种基于自适应特征融合和模型更新的相关滤波跟踪算法。该算法在核相关滤波的基础上,通过对不同特征的响应图采用平均峰值-相关能量的方法进行加权求和,实现了响应图层面的自适应特征融合。根据响应图的峰值特性计算自适应权重,以其作为置信度确定模型的更新率,进而设计自适应模型更新方法。实验结果表明,该算法能够很好地适应背景干扰、目标遮挡、旋转运动等复杂场景,与近年来优秀的相关滤波跟踪算法相比,所提算法的平均距离精度比其中最优的算法提高了2.64%,平均重叠精度提高了1.54%。 相似文献