首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nettle is a widely known plant whose high biological activity and beneficial medicinal effects are attributed to various bioactive compounds, among which polyphenols play an important role. In order to isolate polyphenols and preserve their properties, advanced extraction techniques have been applied to overcome the drawbacks of conventional ones. Therefore, microwave-assisted extraction (MAE) has been optimized for the isolation of nettle leaves polyphenols and it was compared to pressurized liquid extraction (PLE) and conventional heat-reflux extraction (CE). The obtained extracts were analyzed for their individual phenolic profile by UPLC MS2 and for their antioxidant capacity by ORAC assay. MAE proved to be the more specific technique for the isolation of individual phenolic compounds, while PLE produced extracts with higher amount of total phenols and higher antioxidant capacity. Both techniques were more effective compared to CE. PLE nettle extract showed antimicrobial activity against bacteria, especially against Gram-negative Pseudomonas fragi ATCC 4973 and Campylobacter jejuni NCTC 11168 strains. This suggests that PLE is suitable for obtaining a nettle extract with antioxidant and antimicrobial potential, which as such has great potential for use as a value-added ingredient in the food and pharmaceutical industry.  相似文献   

2.
The radiation-induced EPR spectra in some medical herbs are reported. The samples studied are: (i) leaves of nettle, common balm, peppermint and thyme; (ii) stalks of common balm, thyme, milfoil, yarrow and marigold; (iii) blossoms of yarrow and marigold; (iv) blossoms and leaves of hawthorn and tutsan; and (v) roots of common valerian, nettle, elecampane (black and white), restharrows and carlina. Before irradiation all samples exhibit one weak anisotropic singlet EPR line with effective g-value of 2.0050±0.0002. The radiation-induced spectra fall into three groups. EPR spectra of irradiated blossoms of yarrow and marigold, stalks of common balm, thyme, tutsan and yarrow as well as roots of common valerian, nettle and elecampane (black and white) show “cellulose-like” EPR spectrum typical for irradiated plants. It is characterized by one intense central line with g=2.0050±0.0005 and two weak satellite lines situated ca. 30 G left and right to it. EPR spectra of gamma-irradiated restharrows and carlina are complex. They may be represented by one triplet corresponding to the “cellulose-like” EPR spectrum, one relatively intense singlet, situated in the center of the spectrum, and five weak additional satellite lines left and right to the center. The last spectrum was assigned as “carbohydrate-like” type. Only one intense EPR singlet with g=2.0048±0.0005 was recorded after irradiation of leaves of nettle and common balm. The lifetime of the radiation-induced EPR spectra was followed for a period of 3 months.  相似文献   

3.
《Comptes Rendus Chimie》2016,19(9):1090-1100
Nettle (Urtica dioica L.) is a herbaceous perennial that has been used for centuries in folk medicine. More recently, nettle extracts have also been used in cosmetics because of the many benefits of their topical application for skin health. Their potential anti-aging action is of particular interest and is primarily ascribed to their antioxidant capacity. Here, using an experimental design approach and a clustering analysis, we linked the phytochemical composition of nettle extracts to their biological activities. This approach confirmed the antioxidant capacity of nettle extracts as well as providing the first evidence of another mechanism for their anti-aging potential involving the inhibition of enzyme activities, such as elastase and collagenase. We attributed these inhibitory effects to ursolic acid and quercetin present in the nettle extracts. Our results also demonstrated the possibility of extracting ursolic acid, quercetin and other phenolic compounds differentially to obtain an extract with a strong antioxidant capacity and anti-aging activities toward both elastase and collagenase. This could be of particular interest for cosmetic applications of nettle extracts.  相似文献   

4.
Nettle (Urtica dioica) is a great source of bioactive compounds. The objective of this study was to evaluate the extraction techniques (ultrasound, without stirring, and stirring), solvents (methanol, water, and ethanol), and extraction times (1–4 h) to maximize antioxidant capacity of the Urtica dioica extracts. In the case of total phenolic content (TPC) and ABTS•+ (2,2-azino-bis(3-etilbenzotiazolin)-6-sulfonic acid) free radical scavenging values, ultrasound extraction was the most efficient method, while the best results of DPPH (1,1-diphenyl-2-picrylhydrazyl) assay in nettle extracts (91.08%) were obtained using stirring extraction, water as solvent, and 3 h of extraction time. Based on the obtained mathematical models, the optimization revealed that the best extraction conditions were ultrasound treatment with water as solvent and an extraction time of 3.15 h, obtaining values of 21.9 mg eq gallic acid/g dried nettle for TPC, 71.8% for %ABTS•+ and 86.6% for %DPPH. This work proves that aqueous extract of nettle leaves through the ultrasound technique is an important source of natural antioxidants and can be considered a potential alternative to synthetic antioxidants.  相似文献   

5.
Traditionally, medicinal plants have long been used as a natural therapy. Plant-derived extracts or phytochemicals have been exploited as food additives and for curing many health-related ailments. The secondary metabolites produced by many plants have become an integral part of human health and have strengthened the value of plant extracts as herbal medicines. To fulfil the demand of health care systems, food and pharmaceutical industries, interest in the cultivation of precious medicinal plants to harvest bio-active compounds has increased considerably worldwide. To achieve maximum biomass and yield, growers generally apply chemical fertilizers which have detrimental impacts on the growth, development and phytoconstituents of such therapeutically important plants. Application of beneficial rhizosphere microbiota is an alternative strategy to enhance the production of valuable medicinal plants under both conventional and stressed conditions due to its low cost, environmentally friendly behaviour and non-destructive impact on fertility of soil, plants and human health. The microbiological approach improves plant growth by various direct and indirect mechanisms involving the abatement of various abiotic stresses. Given the negative impacts of fertilizers and multiple benefits of microbiological resources, the role of plant growth promoting rhizobacteria (PGPR) in the production of biomass and their impact on the quality of bio-active compounds (phytochemicals) and mitigation of abiotic stress to herbal plants have been described in this review. The PGPR based enhancement in the herbal products has potential for use as a low cost phytomedicine which can be used to improve health care systems.  相似文献   

6.
Pressurized hot water extraction (PHWE) has become a popular green extraction method for different classes of compounds present in numerous kinds of matrices such as environmental, food and botanical samples. PHWE is also used in sample preparation to extract organic contaminants from foodstuff for food safety analysis and soils/sediments for environmental monitoring purposes. The main parameters which influence its extraction efficiency are namely the temperature, extraction time, flow rates and addition of modifiers/additives. Among these different parameters studied, temperature is described as the most important one. It is reported that the extraction of certain compounds is rather dependent on pressurized water with different applied temperature. Thus, the stability and reduced solubilities of certain compounds at elevated temperatures are highlighted in this review. With some modifications, a scaled-up PHWE could extract a higher amount of desirable compounds from solid and powdered samples such as plant and food materials. The PHWE extracts from plants are rich in chemical compounds or metabolites which can be a potential lead for drug discovery or development of disease-resistant food crops.  相似文献   

7.
Food contains a variety of compounds of natural origin that may be harmful when consumed too frequently or at a very high dose level or under inappropriate conditions. Examples for such constituents include the glucosinolates in cabbage or tyrpsin inhibitors in raw beans. Other constituents such as vicin in broad beans or glycyrrhizic acid in liquorice may be harmful for a subpopulation only, e.g., in patients suffering from high blood pressure or in individuals bearing certain genetic defects of metabolism. Furthermore, food may contain compounds which have been added by purpose (legal food additives) such as emulsifiers, preservatives, synthetic colors etc. These compounds are under strict regulation and their safety has been tested rigorously. Contaminants in food such as dioxins, pesticides, drug residues etc. may originate from illegal or inappropriate production or treatment. At lower levels they may reflect background contamination, e.g., in the environment. Finally, nutritional supplements and ingredients of ‘functional food’ require special toxicological testing and evaluation since not all compounds considered as ‘healthy’ in certain concentrations are also beneficial or safe when consumed at higher doses.  相似文献   

8.
Rosemary, oregano, pink savory, lemon balm, St. John’s wort, and saffron are common herbs wildly grown and easily cultivated in many countries. All of them are rich in antioxidant compounds that exhibit several biological and health activities. They are commercialized as spices, traditional medicines, or raw materials for the production of essential oils. The whole herbs or the residues of their current use are potential sources for the recovery of natural antioxidant extracts. Finding effective and feasible extraction and purification methods is a major challenge for the industrial production of natural antioxidant extracts. In this respect, the present paper is an extensive literature review of the solvents and extraction methods that have been tested on these herbs. Green solvents and novel extraction methods that can be easily scaled up for industrial application are critically discussed.  相似文献   

9.
In recent years, there has been an increased interest in products of natural origin. The extraction procedure of bioactive compounds from plant matrices is a crucial step in the development of useful new bioproducts for everyday life. The utilisation of analyses enabling the rapid identification of the presence of a given group of compounds can be helpful in the early stages of the development of new products in order to save time and reduce costs. Within this article, we have presented a comparison of different, accessible methods for the identification of various bioactive compounds, e.g., saponins, carboxylic acids, oils and fats, proteins and amino acids, steroids, and alkaloids in plant-based extracts. Additionally, the multielemental composition of extracts was also examined. The applied methods allowed for confirmation of the presence of biologically active compounds in bio-products obtained by ultrasound-assisted extraction. At a later stage, these procedures should be supplemented by advanced analytical techniques in order to determine the plant chemicals’ content qualitatively and quantitatively.  相似文献   

10.
Medicinal plants are a significant source of biological active and health protective compounds. Post-harvest treatments can affect, in different ways, the content and biological activity of such compounds. One of the most common post-harvesting methods is drying. In this study, we investigated the effect of drying method on the content of natural pigments (chlorophylls, carotenoids and anthocyanins) and on the antioxidant capacity of two traditionally used herbs, the Melissa officinalis (lemon balm) and the Urtica dioica (stinging nettle) both of them landraces collected from plants grown in Nitra region, West of Slovakia. The freeze-dried samples of both herbs exhibited the highest content of chlorophyll a (7.55 ± 0.13 mg/g dry mass for lemon balm and 9.41 ± 0.17 mg/g dry mass for stinging nettle), chlorophyll b (3.12 ± 0.28 mg/g dry mass for lemon balm and 3.34 ± 0.24 mg/g dry mass for stinging nettle) and carotenoids (2.11 ± 0.24 mg/g dry mass for lemon balm and 2.62 ± 0.06 mg/g dry mass for stinging nettle). The content of chlorophylls and carotenoids correlated with the DPPH antioxidant (radical scavenging) capacity. Higher antioxidant capacity of the lemon balm extracts compared to nettle samples was attributed to the higher content of polyphenol compounds anthocyanins. Despite the higher cost, the freeze drying (lyophilisation) was recommended as the most suitable drying method, mainly for reasons of preserving maximum pigment content and antioxidant capacity.  相似文献   

11.
The benefits of natural honeybee products (e.g., honey, royal jelly, beeswax, propolis, beevenom and pollen) to the immune system are remarkable, and many of them are involved in the induction of antibody production, maturation of immune cells and stimulation of the immune system. The type of plants in the geographical area, climatic conditions and production method have a significantly influence on the nutritional quality of honey. However, this variability can influence consumer liking by the sensory attributes of the product. The aim of this work was to compare the most popular honeys from Poland in terms of nutritional value, organoleptic properties and antioxidant activity. In the study, five varieties of honey (honeydew, forest, buckwheat, linden and dandelion) from conventional and organic production methods were tested. The nutritional characteristics of honey samples included acidity, content of water, sugars, vitamin C, HMF and phenolics (total and flavonoids), while honey color, taste, aroma and consistency were investigated in the organoleptic characteristics. The antioxidant activity was determined in water- and ethanol-soluble honey extracts using DPPH and ORAC tests. The results showed that organoleptic and nutritional characteristics of popular Polish honeys differ significantly in relation to plant source and production method. The significant effect of honey variety on the content of HMF, saccharose and phenolics, as well as acidity and antioxidant capacity were noted. The impact of variety and variety × production method interaction was significant in the case of the content of vitamin C, glucose and fructose. A visible difference of buckwheat and forest honeys from other samples was observed. The highest content of total phenolics with antioxidant activity based on the SET mechanism was found in buckwheat honeys, while forest honeys were richer in flavonoids.  相似文献   

12.
Wild fruits have increasingly been investigated as part of recent searches for food products with a high antioxidant activity. In this study, wild edible berberis Berberis vulgaris collected from three different provinces (Jilin, Heilongjiang, and Liaoning) were investigated for their phenolic contents, organic acid contents, mineral contents, antioxidant activity as well as their antimicrobial potential against a range of common food borne pathogens. In addition, a physiochemical and mineral analysis of the fruits was also performed. The methanol extracts of berberis fruit collected from Jilin province were highly active against all the studied food borne bacterial pathogens, i.e., S. aureus and L. monocytogenes, E. coli, P. fluorescens, V. parahaemolyticus, and A. caviae while the berberis extracts from Heilongjiang and Liaoning showed activity only against Gram-negative bacteria. The phenolic content and antioxidant activity were determined by the HPLC separation method and β-carotene bleaching methods, respectively. Four organic acids such as malic acid, citric acid, tartaric acid, and succinic acid were identified while a variety of phenolic compounds were detected among which catechin, chlorogenic acid, and gallic acid were found to be the predominant phenolic compounds in all three of berberis fruit samples. The berberis fruit from Jilin was found to be superior to the Heilongjiang and Liaoning fruit regarding desired physiochemical analysis; however, there were no significant differences in the mineral contents among the three samples. Overall, the berberis fruit from Jilin was ranked as the best in term of the nutritional, physiochemical, antimicrobial, and antioxidant properties. This study confirms the various useful characteristics and features of berberis at a molecular level that can be used as a sustainable source for their potential nutritional applications for making functional foods in different food industries.  相似文献   

13.
The extraction of bioactive compounds from fruits, such as lemon, has gained relevance because these compounds have beneficial properties for health, such as antioxidant and anticancer properties; however, the extraction method can significantly affect these properties. High hydrostatic pressure and ultrasound, as emerging extraction methods, constitute an alternative to conventional extraction, improving extractability and obtaining extracts rich in bioactive compounds. Therefore, lemon extracts (LEs) were obtained by conventional (orbital shaking), ultrasound-assisted, and high-hydrostatic-pressure extraction. Extracts were then microencapsulated with maltodextrin at 10% (M10), 20% (M20), and 30% (M30). The impact of microencapsulation on LEs physicochemical properties, phenolics (TPC), flavonoids (TFC) and relative bio-accessibility (RB) was evaluated. M30 promoted a higher microencapsulation efficiency for TPC and TFC, and a longer time required for microcapsules to dissolve in water, as moisture content, water activity and hygroscopicity decreased. The RBs of TPC and TFC were higher in microcapsules with M30, and lower when conventional extraction was used. The data suggest that microencapsulated LE is promising as it protects the bioactivity of phenolic compounds. In addition, this freeze-dried product can be utilized as a functional ingredient for food or supplement formulations.  相似文献   

14.
The influence of organic and conventional farming practices on the content of single nutrients in plants is disputed in the scientific literature. Here, large-scale untargeted LC-MS-based metabolomics was used to compare the composition of white cabbage from organic and conventional agriculture, measuring 1,600 compounds. Cabbage was sampled in 2 years from one conventional and two organic farming systems in a rigidly controlled long-term field trial in Denmark. Using Orthogonal Projection to Latent Structures–Discriminant Analysis (OPLS-DA), we found that the production system leaves a significant (p?=?0.013) imprint in the white cabbage metabolome that is retained between production years. We externally validated this finding by predicting the production system of samples from one year using a classification model built on samples from the other year, with a correct classification in 83 % of cases. Thus, it was concluded that the investigated conventional and organic management practices have a systematic impact on the metabolome of white cabbage. This emphasizes the potential of untargeted metabolomics for authenticity testing of organic plant products.  相似文献   

15.
Daylily is a valuable plant resource with various health benefits. Its main bioactive components are phenolic compounds. In this work, four extraction methods, ultrasonic-assisted water extraction (UW), ultrasonic-assisted ethanol extraction (UE), enzymatic-assisted water extraction (EW), and enzymatic-assisted ethanol extraction (EE), were applied to extract phenolic compounds from daylily. Among the four extracts, the UE extract exhibited the highest total phenolic content (130.05 mg/100 g DW) and the best antioxidant activity. For the UE extract, the DPPH value was 7.75 mg Trolox/g DW, the FRAP value was 14.54 mg Trolox/g DW, and the ABTS value was 15.37 mg Trolox/g DW. A total of 26 phenolic compounds were identified from the four extracts, and the UE extract exhibited a higher abundance range of phenolic compounds than the other three extracts. After multivariate statistical analysis, six differential compounds were selected and quantified, and the UE extract exhibited the highest contents of all six differential compounds. The results provided theoretical support for the extraction of phenolic compounds from daylily and the application of daylily as a functional food.  相似文献   

16.
Phenolic acids and flavonoids were extracted from a dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb juice and characterized by high-performance liquid chromatography/electrospray ionization mass spectrometry. Among the 43 compounds detected, 5 mono- and dicaffeoylquinic acids, 5 tartaric acid derivatives, 8 flavone and 8 flavonol glycosides were characterized based on their UV spectra and their fragmentation patterns in collision-induced dissociation experiments. The predominant compound was chicoric acid (dicaffeoyltartaric acid). Furthermore, several caffeoylquinic acid isomers were distinguished in dandelion extracts for the first time by their specific mass spectral data. The present study reveals that even more quercetin glycosides were found in dandelion than hitherto assumed. The occurrence of di- and triglycosylated flavonoids in particular has not yet been described. This paper marks the first report on HPLC-DAD/ESI-MSn investigations of phenolic compounds in dandelion.  相似文献   

17.
A comprehensive characterization of grape skin methanolic and ethanolic extracts prepared by pressurized fluid extraction (PFE) at various temperatures within 40 to 120 °C from two wine grape varieties, St. Laurent and Alibernet was performed. For the first time, an offline combination of PFE and electron paramagnetic resonance (EPR) spectroscopy together with other experimental methods was employed to assess the effect of extraction conditions on numerous extract characteristics including antioxidant or radical-scavenging ability, HPLC profile of anthocyanins, total phenolic compounds content (TPC), tristimulus color values (CIE Lab), and pH values. The properties of extracts depend on the solvent used, the mass of grape skins as well as on the extraction conditions among which the temperature plays a crucial role. In spite of wide interval of extraction temperatures, all extracts still retain their antioxidant and/or radical-scavenging properties, indicating that the extracts prepared by PFE can serve as potential source of functional food supplements or color enhancers.  相似文献   

18.
Chayote leaves are known for culinary and traditional medicine applications. This work intended to recover carotenoids and phenolic compounds from chayote leaves using the ultrasound-assisted extraction (UAE). A Box–Behnken design was employed to investigate the impact of extraction time, temperature, and ultrasonic power on the recovery of total carotenoids, total phenolic compounds, and antioxidant activities. For comparative purposes, chayote leaf extracts were prepared by maceration (ME) and microwave-assisted extraction (MAE), using the same time and temperature conditions optimized by UAE. Extraction at 50 °C and 170 Watts for 30 min provided the optimal UAE conditions. UAE showed better extraction efficacy than ME and MAE. The HPLC analysis of the extracts showed that the xanthophyll class was the main class of carotenoids, which constituted 42–85% of the total carotenoid content, followed by β-carotene and tocopherol. Moreover, 26 compounds, classified as phenolic acids, flavonols, flavonoids and other polar compounds, were identified in the chayote leaf extracts. Flavonols accounted for 55% of the total compounds quantified (the major compound was myricetin) and phenolic acids represented around 35%, mostly represented by ferulic acid, chlorogenic acid and (+)-catechin. This study revealed the potential of UAE as an effective green extraction technique to recover bioactive compounds from chayote leaves, for food, and for pharmaceutical and cosmetic applications.  相似文献   

19.
Lippia graveolens is a traditional crop and a rich source of bioactive compounds with various properties (e.g., antioxidant, anti-inflammatory, antifungal, UV defense, anti-glycemic, and cytotoxicity) that is primarily cultivated for essential oil recovery. The isolated bioactive compounds could be useful as additives in the functional food, nutraceuticals, cosmetics, and pharmaceutical industries. Carvacrol, thymol, β-caryophyllene, and p-cymene are terpene compounds contained in oregano essential oil (OEO); flavonoids such as quercetin O-hexoside, pinocembrin, and galangin are flavonoids found in oregano extracts. Furthermore, thermoresistant compounds that remain in the plant matrix following a thermal process can be priced in terms of the circular economy. By using better and more selective extraction conditions, the bioactive compounds present in Mexican oregano can be studied as potential inhibitors of COVID-19. Also, research on extraction technologies should continue to ensure a higher quality of bioactive compounds while preventing an undesired chemical shift (e.g., hydrolysis). The oregano fractions can be used in the food, health, and agricultural industries.  相似文献   

20.
Okara is a white-yellow fibrous residue consisting of the insoluble fraction of the soybean seeds remaining after extraction of the aqueous fraction during the production of tofu and soymilk, and is generally considered a waste product. It is packed with a significant number of proteins, isoflavones, soluble and insoluble fibers, soyasaponins, and other mineral elements, which are all attributed with health merits. With the increasing production of soy beverages, huge quantities of this by-product are produced annually, which poses significant disposal problems and financial issues for producers. Extensive studies have been done on the biological activities, nutritional values, and chemical composition of okara as well as its potential utilization. Owing to its peculiar rich fiber composition and low cost of production, okara might be potentially useful in the food industry as a functional ingredient or good raw material and could be used as a dietary supplement to prevent varied ailments such as prevention of diabetes, hyperlipidemia, obesity, as well as to stimulate the growth of intestinal microbes and production of microbe-derived metabolites (xenometabolites), since gut dysbiosis (imbalanced microbiota) has been implicated in the progression of several complex diseases. This review seeks to compile scientific research on the bioactive compounds in soybean residue (okara) and discuss the possible prebiotic impact of this fiber-rich residue as a functional diet on eubiosis/dysbiosis condition of the gut, as well as the consequential influence on liver and kidney functions, to facilitate a detailed knowledge base for further exploration, implementation, and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号