首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The droplet sizes and electrical charges under different applied electrical voltages are experimentally measured for a liquid-liquid electrostatic spray system. Considering droplet size and charge distributions, the two-dimensional motion for a group of charged droplets in a liquid-liquid electrostatic atomization system is simulated. From measured droplet size and charge distributions, the simulation can obtain the velocities and positions in a two-dimensional domain for all simulated droplets at different times. The various forces acting on droplet as well as their effects on droplet velocity and trajectory are analyzed and the liquid-liquid electrostatic atomization characteristics are revealed. In addition, for one-dimensional motion trajectory of larger droplet, the comparison between simulation and experiment is also conducted and a general agreement can be obtained.  相似文献   

2.
The aim of this experimental work was to demonstrate the ability of three-color laser-induced fluorescence (3cLIF) thermometry to study the thermal mixing of two non-isothermal water sprays. Combined 3cLIF-phase Doppler analyzer measurements were also implemented to derive correlations between droplet size and temperature. Both sprays had different characteristics in terms of flow rate and droplet size distribution. The liquid spray was successively pre-heated, and the other spray was maintained and injected at ambient temperature. The thermal mixing will be discussed in light of a wide set of experimental results obtained under various experimental conditions, including different liquid flow rates, droplet size distributions and droplet concentrations. To analyze the potential effect of droplet coalescence on the mean local liquid temperature, both sprays were alternatively seeded with fluorescent dye. Main results show that significant heating of cold spray is possible when the hot spray is injected with the higher flow rate. Moreover, this heating affects only the smallest droplets.  相似文献   

3.
A general procedure has been developed for the simulation of charged liquid and electrostatically atomized sprays. The procedure follows a Lagrangian approach for simulation of spray droplets and a Eulerian approach for gas‐phase variables, including the electric field generated by the charge presence on droplets. Validation of the procedure was examined through simulations of previously published charged spray experiments. Results showed that for the specification of initial droplet charge, modelling the droplet charge–diameter relationship through a scaling law is as reliable a method as using a directly obtained charge–diameter relationship from experimental measurements. The normalized root‐mean‐square errors for sprays using the two methods were shown to be within 12% of one another, for the prediction of spatially averaged profiles of mean droplet diameters, mean axial velocities and mean radial droplet velocities. Results showed that the general spatial characteristics and dynamics of a charged liquid spray can successfully be reproduced, including the axial and radial dispersal pattern of droplets and the distribution of mean droplet diameters throughout the spray plume. For all sprays with droplet charges defined through a scaling law relationship, the normalized root‐mean‐square errors range from 9.0% to 31.6% for mean droplet diameters, 10.4% to 67.9% for mean axial droplet velocities and 16.8% to 38.6% for mean radial droplet velocities. Lastly, we present a brief set of general recommendations for simulating electrostatically atomized dielectric liquid sprays.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
主要比较了无水乙醇在单根、线性单排、双排毛细管道条件下,其稳定的锥-射流模式喷洒的几项重要指标:在稳定的锥-射流喷洒模式下,雾化的起始电压、电流以及粒径与流量的关系。在实验过程中,由于温度、湿度等环境的不稳定以及装置的制作/安装过程中的精密度不高等因素的影响,实验现象细节存在少量不确定性。但是单管道、单排管道、双排管道三种情况下其起始电压、回滞电压、电流、粒径与流量之间的关系有着相似的规律。即在稳定的电压下:(1)电雾化总流量(Q)的1/2次方与总电流(I)之间成正比;(2)电雾化总流量(Q)的1/2次方与雾化液滴的粒径均值(D)成正比。  相似文献   

5.
An axisymmetric boundary element method (BEM) has been developed to simulate atomization processes in a pressure-swirl atomizer. Annular ligaments are pinched from the parent sheet and presumed to breakup via the linear stability model due to Ponstein. Corrections to Ponstein’s result are used to predict satellite droplet sizes formed during this process. The implementation provides a first-principles capability to simulate drop size distributions for low viscosity fluids. Results show reasonable agreement with measured droplet size distributions and the predicted SMD is 30–40% smaller than experiment. The model predicts a large number of very small droplets that cannot typically be resolved in an experimental observation of the spray. A quasi-3-D spray visualization is presented by tracking droplets in a Lagrangian fashion from their formation point within the ring-shaped ligaments. A complete simulation is provided for a case generating over 80,000 drops.  相似文献   

6.
The main objective of this paper is to develop a technique to measure the global droplet properties in the atomisation region of a water jet issuing in a high-speed air cross-flow. Knowledge of these global properties allows comparison of the break-up outcome of geometrically different water nozzles. This is achieved by extending a PDA system to enable measurements in three-dimensional droplet flows. First, the droplet size and the spatial droplet distribution are measured by the PDA method. The global droplet properties are then obtained by using the measured local mass flux as a weighting factor in integrating the local droplet size. To facilitate the measurement of mass flux in three-dimensional flows, the PDA method is extended so that the reference area for the mass flux is derived as a function of both the geometry of the measurement volume and the flow direction. In the present application of three-dimensional droplet flow (a water jet in air cross-flow), a simple method is developed to measure the three velocity components of droplets by means of a two-component PDA system. The paper outlines the measurement technique and the procedure of estimating the global droplet size and the global droplet size spectra from local droplet properties and local mass flux. Received: 26 July 1998/Accepted: 23 February 1999  相似文献   

7.
Air flow and pressure inside a pressure-swirl spray for direct injection (DI) gasoline engines and their effects on spray development have been analyzed at different injector operating conditions. A simulation tool was utilized and the static air pressure at the centerline of the spray was measured to investigate the static pressure and flow structure inside the swirl spray. To investigate the effect of static air pressure on swirl spray development, a liquid film model was applied and the Mie-scattered images were captured. The simulation and experiment showed that recirculation vortex and air pressure drop inside the swirl spray were observable and the air pressure drop was greater at high injection pressure. At high fuel temperature, the air pressure at the nozzle exit showed higher value compared to the atmospheric pressure and then continuously decreased up to few millimeters distance from the nozzle exit. The pressure drop at high fuel temperatures was more than that of atmospheric temperature. This reduced air pressure was recovered to the atmospheric pressure at further downstream. The results from the liquid film model and macroscopic spray images showed that the air pressure started to affect the liquid film trajectory about 3 mm from the nozzle exit and this effect was sustained until the air pressure recovered to the atmospheric pressure. However, the entrained air motion and droplet size have more significant influence on the spray development after the most of the liquid sheet is broken-up and the spray loses its initial momentum.  相似文献   

8.
Numerical simulation of primary atomization at high Reynolds number is still a challenging problem. In this work a multiscale approach for the numerical simulation of liquid jet primary atomization is applied, using an Eulerian-Lagrangian coupling. In this approach, an Eulerian volume of fluid (VOF) method, where the Reynolds stresses are closed by a Reynolds stress model is applied to model the global spreading of the liquid jet. The formation of the micro-scale droplets, which are usually smaller than the grid spacing in the computational domain, is modelled by an energy-based sub-grid model. Where the disruptive forces (turbulence and surface pressure) of turbulent eddies near the surface of the jet overcome the capillary forces, droplets are released with the local properties of the corresponding eddies. The dynamics of the generated droplets are modelled using Lagrangian particle tracking (LPT). A numerical coupling between the Eulerian and Lagrangian frames is then established via source terms in conservation equations. As a follow-up study to our investigation in Saeedipour et al. (2016a), the present paper aims at modelling drop formation from liquid jets at high Reynolds numbers in the atomization regime and validating the simulation results against in-house experiments. For this purpose, phase-Doppler anemometry (PDA) was used to measure the droplet size and velocity distributions in sprays produced by water jet breakup at different Reynolds numbers in the atomization regime. The spray properties, such as droplet size spectra, local and global Sauter-mean drop sizes and velocity distributions obtained from the simulations are compared with experiment at various locations with very good agreement.  相似文献   

9.
The purpose of this study is to characterize the atomization of a jet of water sprayed into the air at high velocity through a commercial nozzle widely used for sprinkler irrigation. The typical diameter of the droplets present in the spray is in the range of several tens of micrometers to several millimeters. They are visualized by ombroscopy. A specific Droplet Tracking Velocimetry (DTV) technique is developed to estimate the size and velocity of these highly polydispersed droplets that are distinctly non spherical. This analysis is performed from the rupture of the liquid core region (about a distance of 550 nozzle diameters) to the dispersed zone (about a distance of 900 nozzle diameters). With this technique, we obtain joint size-velocity measurements that are rarely produced. Especially two velocity components and also a large diameter range are characterized at the same time; while with other techniques, such as Particle Doppler Anemometry (PDA), the diameter range is quite reduced and requires specific settings. Additional measurements of the liquid volume fraction are performed using a single mode fiber-optic probe. In the light of our experimental data, it appears that the turbulent droplet motion in the spray is strongly anisotropic. This anisotropy is quite unexpected because other studies on sprays (generally concerned with engine applications) show a relatively low anisotropy. We attribute this increase of anisotropy to the fact that, for this type of spray, the droplet relaxation time is long in comparison to the characteristic time of the turbulence and that biggest droplets are still submitted to atomization process. This strong anisotropy is responsible for the poor radial dispersion of the spray.  相似文献   

10.
This paper presents a detailed numerical analysis of diesel engine spray structure induced by the Engine Combustion Network (ECN) Spray A at different injection pressures. The non-reacting simulations are performed using OpenFOAM where an Eulerian–Lagrangian model is adopted in the large eddy simulation (LES) framework. Effects of the LES mesh resolution as well as the spray model parameters are investigated with the focus on their impact on spray structure as the injection pressure varies. The predicted liquid and vapour penetration lengths agree well with the measurements at different injection pressures. The mixture fraction is well captured for the injection pressure of 100 and 150 MPa while a slight deviation from the measurements is observed for the injection pressure of 50 MPa near the nozzle. The parametric analysis confirms that the LES mesh resolution has significant effects on the results. A coarser mesh leads to higher liquid and vapour penetration lengths where the deviation from the measurements is larger, resulting in the highest error at the lowest injection pressure. As the mesh size increases, the droplet size distribution becomes narrower, its pick moves to the smaller droplet size and the probability of droplets with higher temperature increases. On the other hand, with increasing the mesh size, the carrier gas velocity decays slower and its radial dispersion decreases. It is found that the droplet characteristics are more affected by the mesh resolution when the injection pressure is the lowest while the opposite is true for the carrier phase. The number of Lagrangian particles also affects the droplet characteristics and the fuel-air mixing but their effects are not as significant as the mesh size. The results become less sensitive to the number of Lagrangian particles as the pressure injection decreases. Finally, the importance of the initial droplet size distribution is investigated, confirming its impact is marginal, particularly on the liquid length. It is observed that the initial droplet size is only important at very close to the nozzle and its impact on the spray structure becomes quickly insignificant due to the high rates of breakup and evaporation. This trend is consistent at different injection pressures.  相似文献   

11.
The aim of this paper is to perform an accurate analysis of the evaporation of single component and binary mixture fuels sprays in a hot weakly turbulent pipe flow by means of experimental measurement and numerical simulation. This gives a deeper insight into the relationship between fuel composition and spray evaporation. The turbulence intensity in the test section is equal to 10%, and the integral length scale is three orders of magnitude larger than the droplet size while the turbulence microscale (Kolmogorov scales) is of same order as the droplet diameter. The spray produced by means of a calibrated droplet generator was injected in a gas flow electrically preheated. N-nonane, isopropanol, and their mixtures were used in the tests. The generalized scattering imaging technique was applied to simultaneously determine size, velocity, and spatial location of the droplets carried by the turbulent flow in the quartz tube. The spray evaporation was computed using a Lagrangian particle solver coupled to a gas-phase solver. Computations of spray mean diameter and droplet size distributions at different locations along the pipe compare very favorably with the measurement results. This combined research tool enabled further investigation concerning the influencing parameters upon the evaporation process such as the turbulence, droplet internal mixing, and liquid-phase thermophysical properties.  相似文献   

12.
The paper is mainly focused to the vast number of researchers who work within direct injection (DI) engine fuel spray simulations. The most common simulation framework today within the community is the Reynolds Averaged Navier Stokes (RANS) approach together with the Lagrangian Particle Tracking (LPT) method. In fact, this study is one of the first studies where high resolution LES/LPT diesel spray modeling is considered. The potential of LES to deepen the present day multidimensional LPT fuel spray simulations is discussed. Spray evolution is studied far from an injector by modeling a spray as a particle laden jet (PLJ). The effect of d on mixing in non-atomizing and atomizing sprays is thoroughly investigated at jet inlet Reynolds number Re?=?104 and Mach number Ma?=?0.3. Based on and justified by rather recent and also quite old ideas, novel and compact views on droplet breakup in turbulent flows are pointed out from the literature. We use LES/LPT to illustrate that even in a low Weber number flow (We?<?13) the droplet breakup modeling may need considerable attention in contrast to what is typically assumed in the present-day breakup models. LES and LPT techniques are first applied to essentially confirm certain expected droplet size effects on spray shape in non-atomizing monodisperse sprays. In the simulations LES e.g. produces an expected turbulent dispersion pattern that depends on droplet diameter (d) without a droplet dispersion model in contrast to RANS. A new compact droplet breakup model is formulated and tested for droplets that break with a natural resonance time rate according to the Poisson process. As a result of the study: 1) the analysis gives a rigorous and enriching proof of currently existing views on droplet size effects on mixing, and 2) the presented a priori analysis points out the importance of modeling the resonance breakup even at a low We.  相似文献   

13.
Multiphase flows involving liquid droplets in association with gas flow occur in many industrial and scientific applications. Recent work has demonstrated the feasibility of using optical techniques based on laser extinction to simultaneously measure vapor concentration and temperature and droplet size and loading. This work introduces the theoretical background for the optimal design of such laser extinction techniques, termed WMLE (wavelength-multiplexed laser extinction). This paper focuses on the development of WMLE and presents a systematic methodology to guide the selection of suitable wavelengths and optimize the performance of WMLE for specific applications. WMLE utilizing wavelengths from 0.5 to 10 μm is illustrated for droplet size and vapor concentration measurements in an example of water spray, and is found to enable unique and sensitive Sauter mean diameter measurement in the range of ~1–15 μm along with accurate vapor detection. A vapor detection strategy based on differential absorption is developed to extend accurate measurement to a significantly wider range of droplet loading and vapor concentration as compared to strategies based on direct fixed-wavelength absorption. Expected performance of the sensor is modeled for an evaporating spray. This work is expected to lay the groundwork for implementing optical sensors based on WMLE in a variety of research and industrial applications involving multi-phase flows.  相似文献   

14.
A water-air impinging jets atomizer is investigated in this study, which consists of flow visualization using high speed photography and mean droplet size and velocity distribution measurements of the spray using Phase Doppler Anemometry (PDA). Topological structures and break up details of the generated spray in the far and near fields are presented with and without air jet and for an impinging angle of 90°. Spray angle increases with the water jet velocity, air flow rate and impinging angle. PDA results indicate that droplet size is smallest in the spray center, with minimum value of Sauter mean diameter (SMD) of 50 µm at the air flow rate of Qm = 13.50 g/min. SMD of droplets increases towards the spray outer region gradually to about 120 µm. The mean droplet velocity component W along the air-jet axis is highest in the spray center and decreases gradually with increasing distance from the spray center. SMD normalized by the air nozzle diameter is found firstly to decrease with gas-to-liquid mass ratio (GLR) and air-to-liquid momentum ratio (ALMR) and then remain almost constant. Its increasing with aerodynamic Weber number indicates an exponential variation. The study sheds light on the performance of water-air impinging jets atomizers providing useful information for future CFD simulation works.  相似文献   

15.
Experimental measurements and numerical simulations of a high-speed water spray are presented. The numerical model is based on a stochastic separated flow technique that includes submodels for droplet dynamics, heat and mass transfer, and droplet–droplet collisions. Because the spray characteristics near the nozzle are difficult to ascertain, a new method for initialization of particle diameter size is developed that assumes a Rosin–Rammler distribution for droplet size, which correctly reproduces experimentally measured Sauter and arithmetic mean diameters. By relating the particle initialization to lower moments of the droplet statistics, it is possible to take advantage of measurements without substantial penalties associated with the greater experimental uncertainty of individual droplet measurements. Overall, very good agreement is observed in the comparisons of experimental measurements to computational predictions for the streamwise development of mean drop size and velocity. In addition, the importance of modeling droplet–droplet collisions is highlighted with comparison of selected droplet–droplet collision models.  相似文献   

16.
Here we implemented a 3D comprehensive Eulerian-Lagrangian model in order to investigate the electrostatic spray transfer processes in the high-speed rotary bell sprayer. This efficient algorithm contains spray dynamics, airflow, paint droplets tracking and an electrostatic effect to simulate atomization. The algorithm is implemented using the OpenFOAM package. A solver for the particle trajectory was used to illustrate the process of spray transport and also the interaction of the airflow and the particle that is solved by momentum coupling. Creating an initial condition of the particle approach has been proposed that is matched with practical applications. The fluid-dynamics is simulated by solving the unsteady 3D compressible Navier-Stokes equations. Unsteady flow is computed by using a Large eddy simulation (LES) turbulence approach, while the motion of the particles is simulated by tracking the droplet size distribution approach. The model correctly predicts that the bell cup spin forces the paint particles to fall off from the bell surface towards the high-velocity airflow. The present work illustrates a tentative benchmark and contains a systematic analysis of the recirculation zone length, the toroidal vortex, the overspray phenomena and the flowfield characteristics like mean velocity, pressure, turbulent kinetic energy and velocity fluctuation. The results indicate as dominant operating parameter the air-paint flow rate with voltage level deeply affecting the spray shape. A more uniform distribution of the coating is obtained by growing this high-velocity shaping airflow, although the values of the transfer efficiency (TE) are reduced. The distribution of the particle size is very sensitive to changes in the rotational speed. Experimental results obtained in this study put forward a clear link between the shaping air flow rate and the rotation frequency on the aerodynamics and also provide valuable insights to design modern ERBS. The paint spray distribution obtained in the present work is validated against coating experimental results with suitable accuracy.  相似文献   

17.
Large-Eddy Simulations (LES) of an evaporating two-phase flow in an experimental burner are investigated. Two different numerical approaches for the simulation of the dispersed phase are coupled to the same gaseous solver: a mesoscopic Eulerian method and a Lagrangian particle tracking technique. The spray is represented by a single droplet size owing to the locally monodisperse formulation of the employed mesoscopic Eulerian approach. Both approaches use the same drag and evaporation models. They do not take into account the atomization process and a simplified injection model is applied instead. The presented methodology, referred as FIM-UR (Fuel Injection Method by Upstream Reconstruction) defines injection profiles for the monodisperse spray produced by a pressure-swirl atomizer. It is designed so as to ensure similar spray characteristics for both approaches and allows for a direct comparison between them. After a validation of the purely gaseous flow in the burner, liquid-phase dynamics and droplet dispersion are qualitatively and quantitatively evaluated for the Eulerian and Lagrangian simulations. Results obtained for both approaches are in very good agreement and compare reasonably with experiments, indicating that simplified injection methods are appropriate for the simulation of realistic combustor geometries.  相似文献   

18.
The spray atomization characteristics of an undiluted biodiesel fuel (soybean oil methyl ester, SME) in a diesel engine were investigated and compared with that of diesel fuel (ultra low sulfur diesel, ULSD). The experimental results were compared with numerical results predicted by the KIVA-3V code. The spray characteristics of the spray tip penetration, spray area, spray centroid and injection delay were analyzed using images obtained from a visualization system. The Sauter mean diameter (SMD) was analyzed using a droplet analyzer system to investigate the atomization characteristics.It was found that the peak injection rate increases and advances when the injection pressure increases due to the increase of the initial injection momentum. The injection rate of the SME, which has a higher density than diesel fuel, is higher than that of diesel fuel despite its low injection velocity. The high ambient pressure induces the shortening of spray tip penetration of the SME. Moreover, the predicted spray tip penetration pattern is similar to the pattern observed experimentally. The SMD of the SME decreases along the axial distance. The predicted local and overall SMD distribution patterns of diesel and SME fuels illustrate similar tendencies when compared with the experimental droplet size distribution patterns.  相似文献   

19.
20.
We introduce a Eulerian/Lagrangian model to compute the evolution of a spray of water droplets inside a complex geometry. To take into account the complex geometry we define a rectangular mesh and we relate each mesh node to a node function which depends on the location of the node. The time-dependent incompressible and turbulent Navier-Stokes equations are solved using a projection method. The droplets are regarded as individual entities and we use a Lagrangian approach to compute the evolution of the spray. We establish the exchange laws related to mass and heat transfer for a droplet by introducing a mass transfer coefficient and a heat transfer coefficient. The numerical results from our model are compared with those from the literature in the case of a falling droplet in the atmosphere and from experimental investigation in a wind tunnel in the case of a polydisperse spray. The comparison is fairly good. We present the computation of a water droplet spray inside a complex and realistic geometry and determine the characteristics of the spray in the vicinity of obstacles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号