首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study deals with the influence of bubbles on a vertical air–water pipe flow, for gas-lift applications. The effect of changing the bubble size is of particular interest as it has been shown to affect the pressure drop over the pipe. Local measurements on the bubbles characteristics in the wall region were performed, using standard techniques, such as high-speed video recording and optical fibre probe, and more specific techniques, such as two-phase hot film anemometry for the wall shear stress and conductivity measurement for the thickness of the liquid film at the wall. The injection of macroscopic air bubbles in a pipe flow was shown to increase the wall shear stress. Bubbles travelling close to the wall create a periodic perturbation. The injection of small bubbles amplifies this effect, because they tend to move in the wall region; hence, more bubbles are travelling close to the wall. A simple analysis based on a two-fluid set of equations emphasised the importance of the local gas fraction fluctuations on the wall shear stress.  相似文献   

2.
Experimental investigations to establish the effect of flow orientations on gas–liquid two-phase flow patterns in minichannel is reported. Experimental test setup involves entry of air and water into the main channel through Y-junction inlet. Flow patterns are visualized for horizontal (0°), vertical (90°) upward, downward and angular (±30°, ±45°, ±60°) orientations of the channel. The visualized images are utilized for establishing flow pattern maps for all the orientations. A comparative analysis of flow patterns for all the orientations reveal the influence of gravity in the surface tension dominating regimes of the flow.  相似文献   

3.
In a stepped channel operating with large flow rates, the flow skims over the pseudo-bottom formed by the step edges as a coherent stream. Intense three-dimensional recirculation is maintained by shear stress transmission from the mainstream to the step cavities, while significant free-surface aeration takes place. The interactions between free-surface aeration and cavity recirculation are investigated herein with seven step cavity configurations. The experiments were conducted in a large stepped channel operating at large Reynolds numbers. For some experiments, triangular vanes, or longitudinal ribs, were placed across the step cavities to manipulate the flow turbulence to enhance the interactions between the mainstream flow and the cavity recirculation region. The results showed a strong influence of the vanes on the air–water flow properties in both free-stream and cavity flows. The findings demonstrate some passive turbulence manipulation in highly turbulent air–water flows.  相似文献   

4.
5.
An underexpanded jet issuing from a convergent slot and blowing over a surface of convex streamwise curvature was studied experimentally. The jet was confined between side walls, with the slot aspect ratio varying between 40 and 6, but tests showed that in the area of interest close to the slot the flow was effectively two-dimensional. The ratio of slot width to the radius of curvature of the downstream surface varied between 0.05 and 0.33. The main techniques used were Schlieren and shadowgraph to show the jet structure, and surface flow visualization which revealed areas of separation and reattachment. Surface static pressures were also measured on the curved surface. The curved jet proved to have a shock cell structure similar to that of a plane jet. However, the cell structure disappeared more rapidly as the outer shear layer grew more quickly due to the destabilizing effect of the curvature on the turbulence in the shear layer. Even at modest upstream jet pressures, a separated region on the Coanda surface became evident. This region was characterized by a stagnant constant pressure part followed by a region of strongly reversed flow before reattachment took place. The separation was caused by the compression at the end of the first shock cell, with reattachment taking place where expansion in the second cell started. The separated region grew rapidly as the upstream pressure was increased, until, finally, reattachment failed to occur and the jet suddenly broke away from the surface. This work is related to studies of the Coanda flare, where the jet is axisymmetric. The high level of turbulence causes rapid entrainment of air and so gives us clean combustion. However there should be more general application to devices that use the Coanda effect, varying from fluidic devices to blown jet flaps on wings.  相似文献   

6.
This paper describes a new way of generating pulsed air–water jet by entraining and mixing air into the cavity of a pulsed water jet nozzle. Based on the theory of hydro-acoustics and fluid dynamics, a theoretical model which describes the frequency characteristic of the pulsed air–water jet is outlined aimed at gaining a better understanding of this nozzle for generating pulses. The calculated result indicates that as the air hold-up increases, the jet oscillation frequency has an abrupt decrease firstly, and then reaches a minimum gradually at α (air hold-up)=0.5, finally it gets increased slightly. Furthermore, a vibration test was conducted to validate the present theoretical result. By this way, the jet oscillation frequency can be obtained by analyzing the vibration acceleration of the equal strength beam affected by the jet impinging. Thereby, it is found that the experimental result shows similar trend with the prediction of the present model. Also, the relationship between vibration acceleration and cavity length for the pulsed water jet follows a similar tendency in accord with the pulsed air–water jet, i.e. there exists a maximum for each curve and the maximum occurs at the ratio of L/d1 (the ratio of cavity length and upstream nozzle diameter) =2.5 and 2.2, respectively. In addition, experimental results on specimens impinged by the pulsed water jet and pulsed air–water jet show that the erosion depth increases slightly with air addition within a certain range of cavity length. Further, this behavior is very close to the vibration test results. As for erosion volume, the air entrained into the cavity significantly affects the material removal rate.  相似文献   

7.
Force and PIV measurements were performed on rigid tandem wings in the hovering and forward flights at typical Reynolds numbers of real dragonflies. The Strouhal number of the forward flight was 0.6. The phase angles between the fore- and hindwings included 0°, 90°, and 180°. Wings operated in isolation were measured, too, as references. Although many past studies have shown that rigid tandem wings produced less average forces than a single wing regardless the phase angles, the results from the current study illustrated so only at the angle of 180°. However, the contrasting results at 0° and 90° could be due to the differences in parameters of the flow, wing kinematics, and wing shapes. The phase-locked PIV measurements revealed that interaction of wings was achieved through the modifications of the characteristics, such as the strength and locations, of the leading-edge and trailing-edge vortices of fore- and hind-wings. A comparison between the hovering and forward flights identified that the effects of incoming flow included moving the leading-edge and trailing-edge vortices further downstream, and modifying the flow between the tandem wings.  相似文献   

8.
In large-scale circulating fluidized bed (CFB) boilers, it is common to use multiple cyclones in parallel for the capture of solids, assuming that gas–solid flow to be the same in the cyclones. This article presents a study investigating gas–solid flow through six parallel cyclones in a CFB cold test rig. The six cyclones were located asymmetrically on the left and right walls of the riser. Solid volume fraction and particle velocity profiles at the riser outlets and in the horizontal ducts were measured using a fiber optical probe. Cyclone pressure drop and solid circulating rate were measured for each individual cyclone. Measurements showed good agreement as to the non-uniform distribution of the gas–solid flow, which occurred mainly across the three cyclones on one side: the middle cyclones on both sides had higher particle velocities. Conversely, the solid volume fractions, solid fluxes and solid circulating rates of the middle cyclones were lower than those of the other four cyclones. The apparent reason for the flow non-uniformity among the cyclones is the significant flow non-uniformity at the riser outlets. Under typical operating conditions, the solid volume fractions at the riser outlets had a deviation of up to 26% whereas the solid circulating rates at the stand pipes, 7%. These results are consistent with most other studies in the literature.  相似文献   

9.
This paper presents results from seven experimental facilities on the co-current flow of air and water in downward sloping pipes. As a function of the air flow rate, pipe diameter and pipe slope, the required water discharge to prevent air accumulation was determined. In case the water discharge was less than the required water discharge, the air accumulation and additional gas pocket head loss were measured. Results show that volumetric air discharge as small as 0.1% of the water discharge accumulate in a downward sloping section. The experimental data cover all four flow regimes of water-driven air transport: stratified, blow-back, plug and dispersed bubble flow. The analysis of the experimental results shows that different dimensionless numbers characterise certain flow regimes. The pipe Froude number determines the transition from blow-back to plug flow. The gas pocket head loss in the blow-back flow regime follows a pipe Weber number scaling. A numerical model for the prediction of the air discharge as a function of the relevant system parameters is proposed. The novelty of this paper is the presentation of experimental data and a numerical model that cover all flow regimes on air transport by flowing water in downward inclined pipes.  相似文献   

10.
The pseudoplastic flow of suspensions, alumina or styrene-acrylamide copolymer particles in water or an aqueous solution of glycerin has been studied by the step-shear-rate method. The relation between the shear rate,D, and the shear stress,, in the step-shear-rate measurements, where the state of dispersion was considered to be constant, was expressed as = AD 1/2 +CD. The effective solid volume fraction,ø F, andA were dependent on the shear rate and expressed byø F =aD b andA = D . Combining the above relations, the steady flow curve was expressed by = D 1/2 + + 0 (1 – a D b/0.74)–1.85 D, where 0 is the viscosity of the medium.With an increase in solid volume fraction and a decreases in the absolute value of the-potential, the flow behavior of the suspensions changed from Newtonian ( = = b = 0), slightly pseudoplastic ( = b = 0), pseudoplastic ( = 0) to a Bingham-like behavior.The change in viscosity of the medium had an effect on the change in the effective volume fraction.  相似文献   

11.
This paper presents an experimental study of the interaction between a vortex ring and a moving wall. This type of flow can be considered as modeling, in a simplified way, the interaction between a "typical eddy" and the viscous sublayer of a turbulent boundary layer. In the present study, the vortex ring is considered as a three-dimensional (3D) perturbation of a viscous Stokes layer. The interaction was first characterized by visualization. To obtain quantitative information, digital particle image velocimetry (DPIV) and holographic particle-tracking velocimetry (HPTV) were used. These different techniques led to a precise and detailed characterization of the vortex ring alone and of an interaction in which a hairpin vortex is generated in the Stokes layer. The results obtained show a good similarity between the observed vortex ring and the Oseen model. They also validate the Stokes layer model and show that in the present conditions, the hairpin vorticity is comparable to that of the Stokes layer. The holographic study, which was undertaken to obtain full 3D three-component (3D3C) velocity maps, showed the present limitations of HPTV.  相似文献   

12.
The dynamics of annular gas–liquid two-phase swirling jets have been examined by means of direct numerical simulation and proper orthogonal decomposition. An Eulerian approach with mixed-fluid treatment, combined with an adapted volume of fluid and a continuum surface force model, was used to describe the two-phase flow system. The unsteady, compressible, three-dimensional Navier–Stokes equations have been solved by using highly accurate numerical methods. Two computational cases have been performed to examine the effects of liquid-to-gas density ratio on the flow development. It was found that the higher density ratio case is more vortical with larger spatial distribution of the liquid, in agreement with linear theories. Proper orthogonal decomposition analysis revealed that more modes are of importance at the higher density ratio, indicating a more unstable flow field. In the lower density ratio case, both a central and a geometrical recirculation zone are captured while only one central recirculation zone is evident at the higher density ratio. The results also indicate the formation of a precessing vortex core at the high density ratio, indicating that the precessing vortex core development is dependent on the liquid-to-gas density ratio of the two-phase flow, apart from the swirl number alone.  相似文献   

13.
In this paper, a State Controlled Cellular Neural Network (SC-CNN) based autonomous canonical Chua’s circuit is presented. The proposed system is modeled by using suitable connection of three simple state controlled generalized CNN cells. The stability of the circuit is studied by determining the eigenvalues of the stability matrices, while the dynamics as well as onset of chaos have been studied through real time experiments and numerical analysis of the generalized SC-CNN equations. The experimental results such as phase portraits and power spectra are in good agreement with those of numerical computations.  相似文献   

14.
The condensation heat transfer of the ethanol–water mixtures on the vertical tube over a wide range of ethanol concentrations was investigated. The condensation curves of the heat flux and the heat transfer coefficients revealed nonlinear characteristics and had peak values, with respect to the change of the vapor-to-surface temperature difference. This characteristic applies to all ethanol concentrations under all experimental conditions. With the decrease of the ethanol concentrations, the condensation heat transfer coefficient increased notably, especially when the ethanol concentration was very low. The maximum heat transfer coefficient of the vapor mixtures increased to 9 times as compared with that of pure steam at ethanol vapor mass concentration of 1%. With the increase of the ethanol concentrations, the condensation heat transfer coefficient decreased accordingly. When the ethanol concentration reached 50%, the heat transfer coefficient was smaller than that of the pure steam.  相似文献   

15.
The thermal conductivities of compacted bentonite and a bentonite–sand mixture were measured to investigate the effects of dry density, water content and sand fraction on the thermal conductivity. A single expression has been proposed to describe the thermal conductivity of the compacted bentonite and the bentonite–sand mixture once their primary parameters such as dry density, water content and sand fraction are known.  相似文献   

16.
17.
Jets from shaped charges with the liners made of tungsten–copper and copper and having the same mass ratio of explosive to liner are compared. They are found to have the same tip velocities in air, before reaching a steel target. When water target layers are added in front of the same steel target, it is observed in experiments and in numerical simulations that the tip velocity of the tungsten–copper jet diminishes less rapidly than that of the copper jet, so that the tungsten–copper jet velocity upon encountering the steel is higher. These phenomena are also explained by theoretical analysis.  相似文献   

18.
19.
The wall interaction of isolated compressible vortices generated from a short driver section shock tube has been simulated numerically by solving the Navier–Stokes equations in axisymmetric form. The dynamics of shock-free (incident shock Mach number \(M = 1.36\)) and shock-embedded \((M = 1.57)\) compressible vortices near the wall has been studied in detail. The AUSM+ scheme with a fifth-order upwind interpolation formula is used for the convective fluxes. Time integration is performed using a low dissipative and dispersive fourth-order six-stage Runge–Kutta scheme. The evolution of primary and wall vortices has been shown using the velocity field, vorticity field, and numerical schlierens. The vortex impingement, shocklets, wall vortices, and their lift-off are clearly identified from the wall pressure time history. It has been observed that the maximum vorticity of the wall vortices reaches close to 30 % of the primary vortex for \(M = 1.36\) and it reaches up to 60 % for \(M = 1.57\). The net pressure force on the wall due to incident shock impingement is dominant compared to the compressible vortex impingement and their evolution.  相似文献   

20.
A visualized investigation was carried out on the effect of the diverging angle on the bubble motion and interfacial behavior in a Venturi-type bubble generator.It was found two or three large vortexes formed in the diverging section,resulting in strong reentrant jet flow in the front of the bubbles or slugs rushing out of the throat.The jet flow in return bumps into the ongoing bubbles or slugs,leading to strong interaction between the gas and liquid phases.The diverging angle has significant influence on the reentrant flow process and the performance of the bubble generator as well.Increasing the diverging angle results in the reentrant flow moving further forward to the upstream and intensifies the interaction between the two phases.As a consequence,the breakup or collapse of bubbles becomes more violent,whereby finer bubbles are generated.As such,the reentrant flow strongly links to the performance of the Venturi channel taken as a bubble generator,and that a moderate increase in the diverging angle can improve its performance without additional increase in flow resistance like that by increasing liquid flow rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号