首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural microbiota of the urinary tract includes Lactobacillus spp., which secrete molecules with antimicrobial properties and have antagonistic activity against many pathogens. This paper focuses on the antibacterial effect of Lactobacillus strains isolated from urine against clinical strains of Proteus mirabilis isolated from kidney stones and from urine with coexisting urolithiasis. The study involved analyzing the main antimicrobial molecules secreted by Lactobacillus. In order to indicate which agent had the strongest antimicrobial effect, the supernatants were made alkaline and treated with catalase and high temperature. Both treated and untreated supernatants were analyzed for their activity. Exposing uropathogens to all untreated cell-free supernatants of Lactobacillus significantly reduced their growth, and it was established that these properties were related to organic acid secretion by these strains. Using LC–MS/MS and spectrophotometric techniques, lactic, citric, and succinic acids were determined qualitatively and quantitatively. The influence of these acids on the P. mirabilis growth and biofilm formation and their influence on membrane permeability were also investigated. The results indicate that organic acids secreted by Lactobacillus strains have a high antibacterial potential and could be used as novel agents in the treatment of urinary tract infections caused by P. mirabilis.  相似文献   

2.
In the present study, Zingiber officinale is used for the synthesis of Zingiber officinale capped silver nanoparticles (ZOE-AgNPs) and compares the antimicrobial efficacy and compressive strength of conventional glass ionomer cement (GIC) combined with ZOE-AgNPs, lyophilized miswak, and chlorhexidine diacetate (CHX) against oral microbes. Five groups of the disc-shaped GIC specimens were prepared. Group A: lyophilized miswak and GIC combination, Group B: ZOE-AgNPs and GIC combinations, Group C: CHX and GIC combination, Group D: ZOE-AgNPs + CHX + GIC; Group E: Conventional GIC. Results confirmed the successful formation of ZOE-AgNPs that was monitored by UV-Vis sharp absorption spectra at 415 nm. The X-ray diffractometer (XRD) and transmission electron microscope (TEM) results revealed the formation of ZOE-AgNPs with a mean size 10.5–14.12 nm. The peaks of the Fourier transform infrared spectroscopy (FTIR) were appearing the involvement of ZOE components onto the surface of ZOE-AgNPs which played as bioreducing, and stabilizing agents. At a 24-h, one-week and three-week intervals, Group D showed the significantly highest mean inhibitory zones compared to Group A, Group B, and Group C. At microbe-level comparison, Streptococcus mutans and Staphylococcus aureus were inhibited significantly by all the specimens tested except group E when compared to Candida albicans. Group D specimens showed slightly higher (45.8 ± 5.4) mean compressive strength in comparison with other groups. The combination of GIC with ZOE-AgNPs and chlorhexidine together enhanced its antimicrobial efficacy and compressive strength compared to GIC with ZOE-AgNPs or lyophilized miswak or chlorhexidine combination alone. The present study revealed that The combination of GIC with active components of ZOE-AgNPs and chlorhexidine paves the way to lead its effective nano-dental materials applications.  相似文献   

3.
4.
In recent times, consumers have shown increasing interest in plant substitutes for fermented dairy products. This study aimed to investigate the properties of yogurt-type rice-based beverages fermented with lactic acid bacteria and Propionibacterium. The changes in pH, viable population of bacteria, physical properties, and carbohydrate content of these beverages were tested. Fermentation using only Propionibacterium was insufficient to obtain a product with an acidity level similar to that of milk-based yogurt (pH < 4.5). After fermentation, the tested beverages had a high number of Lactobacillus sp. (7.42–8.23 log10 CFU/mL), Streptococcus thermophilus (8.01–8.65 log10 CFU/mL), and Bifidobacterium animalis subsp. lactis (8.28–8.50 log10 CFU/mL). The hardness (2.90–10.40 N) and adhesiveness (13.79–42.16 mJ) of the samples after 14 days of storage at 6 °C varied depending on the starter culture used. The syneresis of all samples ranged between 29% and 31%, which was lower or close to that of milk-based yogurts. The content of individual sugars in the samples also varied depending on the starter culture used for fermentation. The results suggest that the combination of lactic and propionic fermentation helps in the production of rice-based yogurt-type milk substitutes.  相似文献   

5.
Streptococcus mutans (S. mutans) forms part of the commensal microflora and is deemed to be the major pathogen responsible for the generation of dental caries. The enzyme, sortase A enzyme, modulates the surface properties and cariogenicity of S. mutans. Curcumin has been reported to be an inhibitor of Staphylococcus aureus sortase A. In this study, inhibition of a purified S. mutans UA159 sortase A by curcumin was evaluated. Curcumin exerted strong inhibitory activity with a half maximal inhibitory concentration (IC50) of 10.2?±?0.7 μM which was lower than the minimum inhibitory concentration of 175 μM and the minimum bactericidal concentration of 350 μM. These results indicated that curcumin is a S. mutans UA159 sortase A inhibitor and therefore represents as a promising anticaries agent.  相似文献   

6.
All three isomeric 1-methylpyridiniumcarboxaldehydes are present in aqueous solutions predominantly in the hydrated form (PyCH(OH)2). At pH smaller than about 7, the protonated form of the free aldehyde is reduced in two one-electron steps following the sequence H+, e, H+, e. At pH greater than about 8 the free aldehydic form is reduced in two one-electron steps following the sequence, e, H+, e, H+. Up to pH about 10 the reducible species is formed by dehydration of PyCH(OH)2, at higher pH by elimination of hydroxide ion from PyCH(OH)O.The increase in polarographic reduction current between pH about 8 and 10 is due to a base-catalyzed dehydration, involving a rate-determining formation of PyCH(OH)O. The polarographic dissociation curve (i1 vs. pH) is in this case shifted to lower pH-values when compared with the conditional dissociation curve ([PyCH(OH)2] vs. pH). Such behavior shows that the effective reduction of the conjugate base of an electroinactive acid (PyCH(OH)2) occurs.The increase in polarographic reduction current at pH smaller than about 1 is due to an acid-catalyzed dehydration involving formation of PyCH(OH)(OH2+). The rate of protonation governs the limiting current, since the increase in current with increasing acidity occurs in a region one to two acidity units higher than pK1 values obtained spectrophotometrically, using acidity functions HC(OH)2. The free carbonyl species produced by dehydration is reduced following a sequence H+, e, H+, e.  相似文献   

7.
A new preservation approach is presented in this article to prolong the lifetime of raw chicken meat and enhance its quality at 4 °C via coating with highly soluble kidney bean protein hydrolysate. The hydrolysates of the black, red, and white kidney protein (BKH, RKH, and WKH) were obtained after 30 min enzymatic hydrolysis with Alcalase (E/S ratio of 1:100, hydrolysis degree 25–29%). The different phaseolin subunits (8S) appeared in SDS-PAGE in 35–45 kD molecular weight range while vicilin appeared in the molecular weight range of 55–75 kD. The kidney bean protein hydrolysates have considerable antioxidant activity as evidenced by the DPPH-scavenging activity and β-carotine-linolenic assay, as well as antimicrobial activity evaluated by disc diffusion assay. BKH followed by RKH (800 µg/mL) significantly (p ≤ 0.05) scavenged 95, 91% of DPPH and inhibited 82–88% of linoleic oxidation. The three studied hydrolysates significantly inhibited the growth of bacteria, yeast, and fungi, where BKH was the most performing. Kidney bean protein hydrolysates could shield the chicken meat because of their amphoteric nature and many functional properties (water and oil-absorbing capacity and foaming stability). The quality of chicken meat was assessed by tracing the fluctuations in the chemical parameters (pH, met-myoglobin, lipid oxidation, and TVBN), bacterial load (total bacterial count, and psychrophilic count), color parameters and sensorial traits during cold preservation (4 °C). The hydrolysates (800 µg/g) significantly p ≤ 0.05 reduced the increment in meat pH and TVBN values, inhibited 59–70% of lipid oxidation as compared to control during 30 days of cold storage via eliminating 50% of bacterial load and maintained secured storage for 30 days. RKH and WKH significantly (p ≤ 0.05) enhanced L*, a* values, thus augmented the meat whiteness and redness, while, BKH increased b* values, declining all color parameters during meat storage. RKH and WKH (800 µg/g) (p ≤ 0.05) maintained 50–71% and 69–75% of meat color and odor, respectively, increased the meat juiciness after 30 days of cold storage. BKH, RKH and WKH can be safely incorporated into novel foods.  相似文献   

8.
The on-demand release of antibacterial components due to pH variations caused by acidogenic/cariogenic bacteria is a possible design for smart antibacterial restorative materials. This study aimed to fabricate pH-responsive Zn2+-releasing glass particles and evaluate their solubilities, ion-releasing characteristics, and antibacterial properties in vitro. Three kinds of silicate-based glass particles containing different molar ratios of Zn (PG-1: 25.3; PG-2: 34.6; PG-3: 42.7 mol%) were fabricated. Each particle was immersed in a pH-adjusted medium, and the solubility and concentration of the released ions were determined. To evaluate the antibacterial effect, Streptococcus mutans was cultured in the pH-adjusted medium in the presence of each particle, and the bacterial number was counted. The solubility and concentration of Zn2+ released in the medium increased with a decrease in medium pH. PG-3 with a greater content of Zn demonstrated higher concentrations of released Zn2+ compared with PG-1 and PG-2. PG-2 exhibited bactericidal effects at pH 5.1, whereas PG-3 demonstrated bactericidal effects at pH values of 5.1 and 6.1, indicating that PG-3 was effective at inhibiting S. mutans even under slightly acidic conditions. The glass particle with 42.7 mol% Zn may be useful for developing smart antibacterial restoratives that contribute to the prevention of diseases such as caries on root surfaces with lower acid resistance.  相似文献   

9.
Dryopteris crassirhizoma is traditionally used as an herbal remedy for various diseases, and has been identified in a previous study as a potential anti-caries agent. In this study, the effect of a methanol extract of D. crassirhizoma on the viability, growth and virulence properties of Streptococcus mutans, a cariogenic dental pathogen, was investigated. In addition, the phytochemical composition of the extract was analyzed. The extract showed bactericidal and bacteriostatic activity against oral bacteria (MIC and MBC of S. mutans: 62.5 and 250 μg/mL, respectively). At two times the MBC, the extract significantly eliminated S. mutans up to 99.9% after 1 h incubation. The extract also dose-dependently reduced growth rates of S. mutans at sub-MIC levels. Furthermore, at sub-MIC levels, virulence properties (acid production, acid tolerance, glucosyltransferase activity and sucrose-dependent adherence) of S. mutans were also inhibited in a dose-dependent manner. GC-MS analysis revealed the presence of mono and disaccharides (44.9%), fatty acids (12.3%) and sugar alcohols (6.8%) in the extract. These data indicate that the extract might be useful for the control of dental caries.  相似文献   

10.
A new and fast method to determine acidity constants of monoprotic weak acids and bases by capillary zone electrophoresis based on the use of an internal standard (compound of similar nature and acidity constant as the analyte) has been developed. This method requires only two electrophoretic runs for the determination of an acidity constant: a first one at a pH where both analyte and internal standard are totally ionized, and a second one at another pH where both are partially ionized. Furthermore, the method is not pH dependent, so an accurate measure of the pH of the buffer solutions is not needed. The acidity constants of several phenols and amines have been measured using internal standards of known pKa, obtaining a mean deviation of 0.05 pH units compared to the literature values.  相似文献   

11.
Antimicrobial photodynamic therapy (aPDT) has been recommended for clinical application. Its antibacterial effect on bacteria remained in dentinal tubule was seldom investigated. Here, we evaluated the antibacterial effects of aPDT on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus) in planktonic lifestyle, biofilm and carious dentine. Mono-species biofilms or dentinal caries formed on human dentine slices or slabs. Bacterial suspension, biofilms and dentine caries were treated with 0.1 mg mL−1 toluidine Blue O followed by irradiation with a light emission diode (λ − 635 ± 10 nm; 500 mW; 31.5 J cm−2; 60 s) and 0.12% chlorhexidine (CHX), respectively. Residual bacteria were determined by microbial culture analysis and scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was performed to detect the significance of the variables. Both treatments significantly reduced the number of L. acidophilus in planktonic state, biofilm and carious dentine (< 0.05). For S. mutans, CHX was only bactericidal against suspension (< 0.05), while aPDT was effective on both suspension and biofilm (< 0.05) while not for dentin caries (> 0.05). Under the experimental conditions assessed, aPDT could be an alternative disinfection method for superficial layer of caries cavity. Its disinfection on bacteria in dentinal tubule of deep layer was deficient.  相似文献   

12.
Fabrication of a novel capacitive immunosensor based on grafted ethylene diamine and self-assembled gold nanoparticle monolayer on glassy carbon electrode for the detection of Salmonella spp. is described for the first time. In the present study, the Salmonella spp. monoclonal antibodies (denoted as McAbs) was immobilized on gold nanoparticles. Interaction of McAbs and Salmonella spp. was detected directly using the electrochemical impedance spectroscopy (EIS) technique. The experimental results showed that the concentration of antigen was measured through the relative change in capacitance in the corresponding specific binding of Salmonella spp. and McAbs. Under the optimized conditions, the relative changes in capacitance were proportional to the logarithmic values of Salmonella spp. concentrations in the range of 1.0 × 102 to 1.0 × 105 CFU mL−1 (r = 0.991) with the detection limit of 1.0 × 102 CFU mL−1. The stability of proposed immunosensor could be estimated by determining the relative change in capacitance, which remained almost the same in two months and decreased gradually to 85.3% of initial value after four months’ storage. The used immunosensor could be regenerated repeatedly by immersing in glycine-HCl buffer solution (pH 2.8). Finally, the proposed immunosensor was successfully used for the detection of Salmonella spp. in lab-processed commercial pork samples.  相似文献   

13.
Cold-hardy interspecific hybrid grape varieties (Vitis spp.) have distinctive chemical compositions such as high acidity, a high content of anthocyanin diglucoside and a low condensed tannins content, compared to Vitis vinifera varieties. Considering the importance of phenolic compounds on the quality of red wine, a mechanical maceration technique, accentuated cut edges (ACE), has been evaluated when applied directly to crushed grapes (ACE-C), and 24 h before pressing (ACE-P), to improve the extraction of phenolic compounds. Samples were collected at crushing, bottling, and after five months of aging. Phenolic compounds and color characteristics of the wines were analyzed by high-performance liquid chromatography (HPLC) with diode array and fluorescence detectors and UV-Visible spectrophotometry. The color intensity, non-anthocyanin monomeric compounds and total iron-reactive phenolics content increased after applying ACE, compared to the control (CTL) after aging, and was significantly higher (37%) after ACE-C, compared to ACE-P. However, the concentration of condensed tannins was below the limit of detection in all the samples, indicating that ACE did not help their extraction or further interactions occurred with disrupted cell wall material. Applying ACE at crushing was considered as the optimum time to achieve a higher color stability in Marquette red wines.  相似文献   

14.
The aim of this study was to determine the influence of effective microorganisms (EM) present in biological formulations improving soil quality on degradation of two herbicides, diflufenican and flurochloridone. Three commercially available formulations containing EM were used: a formulation containing Bifidobacterium, Lactobacillus, Lactococcus, Streptococcus, Bacillus, and Rhodopseudomonas bacteria and the yeast Saccharomyces cerevisiae; a formulation containing Streptomyces, Pseudomonas, Bacillus, Rhodococcus, Cellulomonas, Arthrobacter, Paenibacillusa, and Pseudonocardia bacteria; and a formulation containing eight strains of Bacillus bacteria, B. megaterium, B. amyloliquefaciens, B. pumilus, B. licheniformis, B. coagulans, B. laterosporus, B. mucilaginosus, and B. polymyxa. It was demonstrated that those formulations influenced degradation of herbicides. All studied formulations containing EM reduced the diflufenican degradation level, from 35.5% to 38%, due to an increased acidity of the soil environment and increased durability of that substance at lower pH levels. In the case of flurochloridone, all studied EM formulations increased degradation of that active substance by 19.3% to 31.2% at the most. For control samples, equations describing kinetics of diflufenican and flurochloridone elimination were plotted, and a time of the half-life of these substances in laboratory conditions was calculated, amounting to 25.7 for diflufenican and 22.4 for flurochloridone.  相似文献   

15.
Based on data from The Global Burden of Disease Study in 2016, dental and oral health problems, especially dental caries, are a disease experienced by almost half of the world’s population (3.58 billion people). One of the main causes of dental caries is the pathogenesis of Streptococcus mutans. Prevention can be achieved by controlling S. mutans using an antibacterial agent. The most commonly used antibacterial for the treatment of dental caries is chlorhexidine. However, long-term use of chlorhexidine has been reported to cause resistance and some side effects. Therefore, the discovery of a natural antibacterial agent is an urgent need. A natural antibacterial agent that can be used are herbal medicines derived from medicinal plants. Piper crocatum Ruiz and Pav has the potential to be used as a natural antibacterial agent for treating dental and oral health problems. Several studies reported that the leaves of P. crocatum Ruiz and Pav contain secondary metabolites such as essential oils, flavonoids, alkaloids, terpenoids, tannins, and phenolic compounds that are active against S. mutans. This review summarizes some information about P. crocatum Ruiz and Pav, various isolation methods, bioactivity, S. mutans bacteria that cause dental caries, biofilm formation mechanism, antibacterial properties, and the antibacterial mechanism of secondary metabolites in P. crocatum Ruiz and Pav.  相似文献   

16.
Thermoplastic nanocomposite materials with potential bactericide properties were prepared and their surface properties and adhesion to Streptococcus mutans, S. mutans, were characterized. Solution blow spinning was successfully used to prepare films with a fiber-like structure on the surface of nanocomposites based on Polyvinylidene fluoride, PVDF, filled with well dispersed TiO2 nanoparticles. PVDF/TiO2 nanocomposites were prepared varying the nanoparticles content (0%, 1%, 2%, 5% and 10% by weight). In order to understand the influence of the presence of TiO2 nanoparticles and the final surface properties on the adhesion of S. mutans to the materials, a deep characterization was carried out focusing on the morphology, roughness, surface free energy from contact angle measurements and cell adhesion by single cell force spectroscopy. It was observed that the uniform dispersion of the nanofiller arose from nanoparticles embedded in the polymer when fibers were created during the blow spinning process. TiO2 content influenced the topography of the films probably due to a direct effect on the solvent evaporation rate. Although this factor greatly conditioned the roughness of the samples and therefore the surface free energy, S. mutant adhesion on the substrates under study was concluded to be more dependent on the specific interactions with the surface polar groups of the material.  相似文献   

17.
This study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (Escherichia coli, Enterococcus spp., and Pseudomonas spp.) in actual urban wastewater (UWW), obtaining the optimal value of PMS at 0.5 mmol/L. Under such experimental conditions, bacterial concentration ≤ 10 CFU/100 mL was reached after 15 min of UV-C treatment (0.03 kJ/L of accumulative UV-C radiation) for natural occurring bacteria, no bacterial regrowth was observed after 24 and 48 h, and 80% removal of total CECs was achieved after 12 min (0.03 kJ/L), with a release of sulfate ions far from the limit established in wastewater discharge. Moreover, the inactivation of Ampicillin (AMP), Ciprofloxacin (CPX), and Trimethoprim (TMP) antibiotic-resistant bacteria (ARB) and reduction of target genes (ARGs) were successfully achieved. Finally, a harmful effect toward the receiving aquatic environment was not observed according to Aliivibrio fischeri toxicity tests, while a slightly toxic effect toward plant growth (phytotoxicity tests) was detected. As a conclusion, a cost analysis demonstrated that the process could be feasible and a promising alternative to successfully address wastewater reuse challenges.  相似文献   

18.
Three new copper (II) complex compounds with chlorhexidine (CHX) as ligand have been prepared and characterized by elemental and thermogravimetrical analyses, molar conductances, infrared, and UV–Vis spectra. Chlorhexidine acts as neutral tetradentate NNNN donor, coordinating through the four imine nitrogen atoms. Based on the experimental data the following formulas have been proposed for the complex compounds: [Cu(CHX)](NO3)2 (1), [Cu2(CHX)Br2Cl2]·4H2O (2), and [Cu(CHX)Cl]Cl (3). Thermal decomposition evidenced dehydration (complex 2), anionic moieties release and the ligand cleavage with chlorobenzene moieties removal for all complexes. The final residue is in all cases copper oxide. Antibacterial and antifungal activities of the complexes have been determined in vitro, by the cup-plate agar diffusion method, against Escherichia coli, Staphyloccocus aureus, and Candida albicans. The complexes present an activity comparable to that of chlorhexidine, the most active being [Cu2(CHX)Br2Cl2]·4H2O.  相似文献   

19.
The health and safety of grazing animals was the subject of microbiological monitoring on natural source of drinking waters in the upper Molise region, Italy. Surface water samples, on spring-summer season, were collected and submitted to analyses using sterile membrane filtration, cultural medium, and incubation. The level of environmental microbial contamination (Total viable microbial count, yeasts and fungi) and faecal presence (Total and faecal coliforms, E. coli, and Salmonellae spp.) were carried out. By the selective microbiological screening, twenty-three E. coli strains from drinking waters were isolated and submitted to further studies to evaluate antibiotic resistance by antibiograms vs. three animal and two diffuse human antibiotics. Furthermore, after a fine chemical characterization by GC and GC-MS, three Essential Oils (EOs) of aromatic plants (Timus vulgaris, Melaleuca alternifolia, Cinnamomun verum) aromatograms were performed and results statistically compared. The effects of EOs vs. antibiotics on E. coli strains isolated from drinking waters showed a total absence of microbial resistance. In our experimental conditions, even if some suggestions will be further adopted for better managements of grazing animals, because the health and safety represent a guarantee for both animals and humans.  相似文献   

20.
In this study, the activity of essential oils (EOs) against microorganisms involved in oral diseases was evaluated. Fourteen EOs were selected and subjected to gas chromatographic analysis, including Illicium verum, Eucaliptus globulus, Eugenia caryophyllata, Leptospermum scoparium, Mentha arvensis, Mentha piperita, Myrtus communis, Salvia officinalis, Melaleuca alternifolia, Rosmarinus officinalis, Lavandula x intermedia, Thymus capitatus and Thymus vulgaris. These EOs were tested for their antimicrobial activity on Streptococcus mutans and Lactobacillus species clinically isolated from dental surgery patients. The antibacterial activity was evaluated by means of the disc diffusion and the minimum inhibitory concentration (MIC). Five EOs, having shown an interesting antimicrobial activity, were selected for a second screening in combination between them and with chlorhexidine. From the second assays, two EO–EO and three EO-chlorhexidine associations gave interesting results as potential constituents of mouthwashes, especially for the contribution of oxygenated monoterpenes, including menthol, thymol and carvacrol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号