首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
We report a Brownian configuration field implementation of a recent constitutive equation for suspensions, reported by Phan-Thien et al. 1999. The numerical method is a hybrid technique, which combines a modification of the Brownian configuration field method described by Hulsen et al. 1997 and the adaptive viscosity split stress formulation proposed by Sun et al. 1996. The implementation is used to examine the flow past a sphere in a tube. The relative viscosity derived from the drag force/sedimentation velocity agrees well with a well-known empiricism. In addition, the ratio of the pressure force to the drag on the sphere seems to be weakly dependent on the volume fraction, and is somewhat higher than Brenner's results of 1962, which were derived for Newtonian fluids. Received: 5 April 1999/Accepted: 27 September 1999  相似文献   

2.
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency. The project supported by the National Natural Science Foundation of China (19889209) and Russian Foundation for Basic Research (97-02-16943)  相似文献   

3.
王玮  杜红棉  范锦彪  薛培康 《爆炸与冲击》2021,41(5):054101-1-054101-12
应用辐射测温法进行爆炸火焰温度测试时,火焰发射率取经验定值的方法与火焰燃烧机理存在较大的偏差,同时测点距离与环境温湿度也会导致不同程度的热辐射衰减,从而影响爆炸火焰温度的测量精度。本文针对上述两个问题,基于大气辐射理论与光学传播规律,提出了辐射路径衰减补偿模型,结合由红外热像仪和比色测温仪测量的爆炸火焰动态发射率,对爆炸场火焰真温进行联合反演,并将测算结果与比色测温仪测得的火焰表面温度进行对比,得到了反演温度误差范围。试验结果表明,利用本文所提出的补偿模型测算得到的爆炸火焰温度,误差由补偿前的55.699%~89.847%降低到11.292%~59.077%,有效提高了外场爆炸瞬态火焰温度的测算精度。  相似文献   

4.
Here, the effects of localization and propagation of martensitic phase transformation on the response of SMA thin structures subjected to thermo-mechanical loadings are investigated using nonlocal constitutive model in conjunction with finite element method. The governing equations are derived based on variational principle considering thermo-mechanical equilibrium and the spatial distribution of the nonlocal volume fraction of martensite during transformation. The nonlocal volume fraction of martensite is defined as a weighted average of the local volume fraction of martensite over a domain characterized by an internal length parameter. The local version of the thermo-mechanical behavior model derived from micromechanics considers the local volume fraction of martensite and the mean transformation strain. A 4-noded quadrilateral plane stress element with three degrees of freedom per node accounting for in-plane displacements and the nonlocal volume fraction of martensite is developed. Numerical simulations are conducted to bring out the influence of material and geometrical heterogeneities (perturbations/defects) on the localization and propagation of phase transformation in SMA thin structures. Also, a sensitivity analysis of the material response due to the localization and the other related model parameters is carried out. The detailed investigation done here clearly shows that the localization of phase transformation has significant effect on the response of shape memory alloys.  相似文献   

5.
A cold flow model of an 8 MW dual fluidized bed (DFB) system is simulated using the commercial computational particle fluid dynamics (CPFD) software package Barracuda. The DFB system comprises a bubbling bed connected to a fast fluidized bed with the bed material circulating between them. As the hydrodynamics in hot DFB plants are complex because of high temperatures and many chemical reaction processes, cold flow models are used. Performing numerical simulations of cold flows enables a focus on the hydrodynamics as the chemistry and heat and mass transfer processes can be put aside. The drag law has a major influence on the hydrodynamics, and therefore its influence on pressure, particle distribution, and bed material recirculation rate is calculated using Barracuda and its results are compared with experimental results. The drag laws used were energy-minimization multiscale (EMMS), Ganser, Turton–Levenspiel, and a combination of Wen–Yu/Ergun. Eleven operating points were chosen for that study and each was calculated with the aforementioned drag laws. The EMMS drag law best predicted the pressure and distribution of the bed material in the different parts of the DFB system. For predicting the bed material recirculation rate, the Ganser drag law showed the best results. However, the drag laws often were not able to predict the experimentally found trends of the bed material recirculation rate. Indeed, the drag law significantly influences the hydrodynamic outcomes in a DFB system and must be chosen carefully to obtain meaningful simulation results. More research may enable recommendations as to which drag law is useful in simulations of a DFB system with CPFD.  相似文献   

6.
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in the transverse section, and by appling topology theory, the structures on both endwalls and blade surfaces were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. Foundation items: 973 Project of China; the Doctoral Foundation of Education Ministry of China (EDAF24403003) Biography: YANG Qing-hai (1969−)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号