首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel bidentate Schiff base ligand (HL, Nanobidentate Ferrocene based Schiff base ligand L (has one replaceable proton H)) was prepared via the condensation of 2‐amino phenol with 2‐acetyl ferrocene. The ligand was characterized using elemental analysis, mass spectrometry, infrared (IR) spectroscopy, 1proton nuclear magnetic resonance (H‐NMR) spectroscopy, scanning electron microscopy (SEM), and thermal analysis. The corresponding 1:1 metal complexes with some transition‐metal ions were additionally characterized by their elemental analysis, molar conductance, SEM, and thermogravimetric ana1ysis (TGA). The complexes had the general formula [M(L)(Cl)(H2O)3]xCl·nH2O (M = Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II)), (x = 0 for Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II), x = 1 for Cr(III) and Fe(III)), (n = 1 for Cr(III), n = 3 for Mn(II) and Co(II), n = 4 for Fe(III), Ni(II), Cu(II), Zn(II), and Cd(II)). Density functional theory calculations on the HL ligand were also carried out in order to clarify molecular structures by the B31YP exchange‐correlation function. The results were subjected to molecular orbital diagram, highest occupied mo1ecu1ar orbital–lowest occupied molecular orbital, and molecular electrostatic potential calculations. The parent Schiff base and its eight metal complexes were assayed against four bacterial species (two Gram‐negative and two‐Gram positive) and four different antifungal species. The HL ligand was docked using molecular operating environment 2008 with crystal structures of oxidoreductase (1CX2), protein phosphatase of the fungus Candida albicans (5JPE), Gram(?) bacteria Escherichia coli (3T88), Gram(+) bacteria Staphylococcus aureus (3Q8U), and an androgen‐independent receptor of prostate cancer (1GS4). In order to assess cytotoxic nature of the prepared HL ligand and its complexes, the compounds were screened against the Michigan cancer foundation (MCF)‐7 breast cancer cell line, and the IC50 values of compounds were calculated.  相似文献   

2.
A new Schiff base ligand (HL) was prepared via a condensation reaction of quinoline‐2‐carboxaldhyde with 2‐aminophenol in a molar ratio of 1:1. Its transition metal mixed ligand complexes with 1,10‐phenanthroline (1,10‐phen) as co‐ligand were also synthesized in a 1:1:1 ratio. HL and its mixed ligand complexes were characterized using elemental analysis, infrared, 1H NMR, mass and UV–visible spectroscopies, molar conductance, magnetic measurements, solid reflectance, thermal analysis, electron spin resonance and X‐ray diffraction. Molar conductance measurements showed that all complexes have an electrolytic nature, except Cd(II) complex. From elemental and spectral data, the formulae [M(L)(1,10‐phen)(H2O)]Clx?nH2O (where M = Cr(III) (x = n = 2), Mn(II) and Ni(II) (x = 1, n = 2), Fe(III) (x = n = 2), Co(II), Cu(II) and Zn(II) (x = 1, n = 2)) and [Cd(L)(1,10‐phen)Cl]?3H2O for the metal complexes have been proposed. The geometric structures of complexes were found to be octahedral. Powder X‐ray diffraction reflected the crystalline nature of the complexes; however, the Schiff base is amorphous. HL and its mixed ligand complexes were screened against Gram‐positive bacteria (Streptococcus pneumoniae and Bacillus subtilis) and Gram‐negative bacteria (Pseudomonas aeruginosa and Escherichia coli). Antifungal activity was determined against Aspergillus fumigatus and Candida albicans, the data showing that most complexes had activity less than that of the Schiff base while Mn(II), Fe(III) and Ni(II) complexes showed no significant antifungal activity. The anticancer activity of HL and its metal complexes was also studied against breast and colon cell lines. The metal complexes showed IC50 higher than that of HL, especially the Cu(II) complex which showed the highest IC50 against breast cell line.  相似文献   

3.
Series of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes were prepared with tetradentate Schiff base ligand derived by condensation of 2‐aminophenol with dibenzoylmethane. The novel Schiff base H2L (2–2′‐((1Z,1Z’)‐(1,3‐diphenyl propane‐1,3 diylidene) bis (azanylylidene) diphenol) and its binary metal complexes were characterized by physicochemical procedures i.e. elemental analysis, FT‐IR, UV–Vis, thermal analyses (TGA/DTG), mass spectrometry, magnetic susceptibility and conductometric measurements. On the basis of these studies, an octahedral geometry for all these complexes was proposed expect Ni(II) complex which had tetrahedral geometry. Molar conductivity values revealed that the complexes were electrolytes except Mn(II), Zn(II) and Cd(II) complexes were non electrolytes. The ligand bound to the metal ions via two azomethine N and two phenolic OH as indicated from the IR and 1H NMR spectral study. The molecular and electronic structures of H2L and its zinc complex were optimized theoretically and the quantum chemical parameters were calculated. The antimicrobial activity against a number of bacterial organisms as Streptococcus pneumonia, Bacillus Subtilis, Pseudomonas aeruginosa and Escherichia coli and fungi as Aspergillus fumigates, Syncephalastrum racemosum, Geotricum candidum and Candida albicans by disk diffusion method were screened for the Schiff base and its complexes. The Cd(II) complex has potent antimicrobial activity. Anticancer activity of the Schiff base ligand and its metal complexes were evaluated in human cancer (MCF‐7 cells viability). The Cr(III) complex exhibited higher activity than other complexes and ligand. Molecular docking was used to predict the binding between Schiff base ligand (H2L) and its Zn(II) complex and the receptors of RNA of amikacin antibiotic (4P20) and human‐DNA‐Topo I complex (1SC7). The docking study provided useful structural information for inhibition studies.  相似文献   

4.
Coordination compounds of Fe(III), Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II) ions were synthesized from the ligand [4,4′‐((((ethane‐1,2‐diylbis(oxy))bis(2,1‐phenylene))bis(methanylylidene))bis(azanylylidene))diphenol]ethane (H2L) derived from the condensation of bisaldehyde and 4‐aminophenol. Microanalysis, magnetic susceptibility, infrared, 1H NMR and mass spectroscopies, molar conductance, X ray powder diffraction and thermal analysis were used to confirm the structure of the synthesized chelates. According to the data obtained, the composition of the 1:1 metal ion–bis‐Schiff base ligand was found to be [M(H2L)(H2O)2]Cln (M = Zn(II), Ni(II), Co(II), Cu(II), Cd(II) and Mn(II), n = 2; Fe(III), n = 3). Magnetic susceptibility measurements and reflectance spectra suggested an octahedral geometry for the complexes. Central metals ions and bis‐Schiff base coordinated together via O2 and N2 donor sites which as evident from infrared spectra. The Gaussian09 program was applied to optimize the structural formula for the investigated Schiff base ligand. The energy gaps and other important theoretical parameters were calculated applying the DFT/B3LYP method. Molecular docking using AutoDock tools was utilized to explain the experimental behaviour of the Schiff base ligand towards proteins of Bacillus subtilis (5 h67), Escherichia coli (3 t88), Proteus vulgaris (5i39) and Staphylococcus aureus (3ty7) microorganisms through theoretical calculations. The docked protein receptors were investigated and the energies of hydrogen bonding were calculated. These complexes were then subjected to in vitro antibacterial studies against several organisms, both Gram negative (P. vulgaris and E. coli) and Gram positive (S. pyogones and B. subtilis). The ligand and metal complexes exhibited good microbial activity against the Gram‐positive and Gram‐negative bacteria.  相似文献   

5.
Coordination compounds of Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) ions were synthesized from reaction with Schiff base ligand 4,6‐bis((E)‐(2‐(pyridin‐2‐yl)ethylidene)amino)pyrimidine‐2‐thiol (HL) derived from the condensation of 4,6‐diaminopyrimidine‐2‐thiol and 2‐(pyridin‐2‐yl)acetaldehyde. Microanalytical data, magnetic susceptibility, infrared and 1H NMR spectroscopies, mass spectrometry, molar conductance, powder X‐ray diffraction and thermal decomposition measurements were used to determine the structure of the prepared complexes. It was found that the coordination between metal ions and bis‐Schiff base ligand was in a molar ratio of 1:1, with formula [M (HL)(H2O)2] Xn (M = Mn (II), Co (II), Ni (II), Cu (II) and Cd (II), n = 2; Fe (III), n = 3). Diffuse reflectance spectra and magnetic susceptibility measurements suggested an octahedral geometry for the complexes. The coordination between bis‐Schiff base ligand and metal ions was through NNNN donor sites in a tetradentate manner. After preparation of the complexes, biological studies were conducted using Gram‐positive (B. subtilis and S. aureus) and Gram‐negative (E. coli and P. aeruginosa) organisms. Metal complexes and ligand displayed acceptable microbial activity against both types of bacteria.  相似文献   

6.
New Schiff base ligand (H2L, 1,2‐bis[(2‐(2‐hydroxyphenylimino)‐methyl)phenoxy]ethane) came from condensation reaction of bisaldehyde and 2‐aminophenol was synthesized in a molar ratio 1:2. Metal complexes and the ligand were completely discussed with spectroscopic and theoretical mechanism. The complexes with Fe(III), Cr(III), Mn(II), Co(II), Cu(II), Ni(II), Th(IV) and Zn(II) have been discussed and characterized by elemental analyses, molar conductance, IR, mass spectroscopy, thermal, magnetic measurements, and 1H NMR. The results proved that the Schiff base was a divalent anion with hexadentate O4N2 donors came from the etheric oxygens (O1, O2), azomethine nitrogens (N1, N2) and deprotonated phenolic oxygens (O3, O4). Density Functional Theory using (B3LYP/6‐31G*) level of theory were implemented to predict molecular geometry, Mulliken atomic energetic and charges of the ligand and complexes. The calculation display that complexes had weak field ligand. The binding energy ranged from 650.5 to 1499.0 kcal/mol for Mn(II) and Th(IV) complexes, respectively. The biological behavior of the Schiff base ligand and its metal complexes were displayed against bacteria and fungi organisms. Fe(III) complex gave remarkable biological activity in comparison with the parent bis Schiff base.  相似文献   

7.
Three metal complexes of Gd (III), Pr (III) and Ru (III) metal ions with Schiff base ligand (H2L) (prepared through l:2 condensation of dibenzoyl methane and anthranilic acid) were prepared and characterized using various physio-chemical methods like: elemental analyses, IR, mass spectrometry, magnetic moment, 1H NMR, SEM and TG/DTG thermal analysis. The analytical and spectroscopic tools showed that the complexes had composition of ML type with octahedral geometry. The mass spectra gave the possible molecular ion peaks of the Schiff base ligand and three metal chelates. The 1H NMR data supported the IR finding that the ligand coordinated to the metal ions via carboxylate proton displacement. Thermal analysis (TG/DTG) was utilized to differentiate between coordinated and hydrated water molecules. The Schiff base (H2L) and its metal complexes have been screened for their antibacterial activity against Gram (+) bacteria (Streptococcus aureus and Bacillis subtilis), Gram (−) bacteria (Salmonella typhimurium and Escherichia coli) and two fungi (Aspergillus fumigatu and Candida albicans) organisms by agar diffusion method. The anticancer activity was screened against human breast cancer cell line (MCF-7). The H2L ligand and its metal chelates were docked using MOE 2008 software with crystal structure of Gram (+) bacteria: Staphylococcus aureus (PDB ID: 3Q8U) and Gram (−) bacteria: Salmonella typhimurium (PDB ID: lDZR) to identify the binding orientation or conformation of the complex in the active site of the protein.  相似文献   

8.
A new Azo‐Schiff base ligand L was prepared by reaction of m‐hydroxy benzoic acid with (Schiff base B) of 3‐[2‐(1H–indol‐3‐yl)‐ethylimino]‐1.5‐dimethyl‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylamine. This synthesized ligand was used for complexation with different metal ions like Ni(II), Co(II), Pd(II) and Pt(IV) by using a molar ratio of ligand: metal as 1:1. Resulted compounds were characterized by NMR (1H and 13C), UV–vis spectroscopy, TGA, FT‐IR, MS, elemental analysis, magnetic moment and molar conductivity studies. The activation thermodynamic parameters, such as ΔE*, ΔH*, ΔS*, ΔG*and K are calculated from the TGA curves using Coats ‐ Redfern method. Hyper Chem‐8 program has been used to predict structural geometries of compounds in gas phase. The biological activities of Schiff base and its complexes had been tested in vitro against, two Gram positive bacteria (Bacillus subtillis and Staphylococcus aureus) and two Gram negative bacteria (Escherichia coli and Pseudomonas aeruguinosa).  相似文献   

9.
Physicochemical studies were performed to study new ferrocene based Schiff base ligand (HL), (Z)‐(4‐(1‐((2‐carboxycyclohexa‐2,4‐dien‐1‐yl)imino)ethyl)[bis(η 5 cyclopenta‐1,3‐dien‐1 yl)]iron with some transition metal ions to form a series of ferrocenyl derivatives bearing transition metal complexes of the type [M(L)Cl(H2O)3] (M = Ni(II), Cu(II)), [M(L)Cl(H2O)3]nH2O (M = Mn(II) (n = 1), Co(II) (n = 1), Zn(II) (n = 2) and Cd(II) (n = 3)) and [M(L)Cl(H2O)3]Cl.nH2O (M = Cr(III) (n = 2) and Fe(III) (n = 1)). The new ligand and metal ion complexes have been prepared and characterized by IR, UV‐Vis, 1H‐NMR, TG/DTA, elemental analysis and mass spectrometry. The TGA/DTG analysis revealed that the ferrocene precursors decompose spontaneously to form iron(II) oxide. The molecular and electronic structure of the ligand (HL) was optimized theoretically and the quantum chemical parameters were calculated. The molecular structure with a variety of functionalities can be used to investigate the coordination sites and the total charge density around each atom. DFT‐based molecular orbital energy calculations of the new ligand have been also studied. All of the complexes were screened against a panel of Gram (+) bacteria: Streptococcus pneumoniae and Bacillis subtilis , Gram (−) bacteria: Pseudomonas aeruginosa and Escherichia coli and panel of fungi: Aspergillus fumigatu , Syncephalastrum racemosum , Geotricum candidum and Candida albicans . Anticancer activity screening for the tested compounds using 4 different concentrations of HL ligand against human tumor cells of breast cancer cell line MCF‐7 were obtained. Molecular docking was used to predict the binding between HL ligand and human‐DNA‐Topo I complex (PDB ID: 1SC7), the receptors of breast cancer mutant oxidoreductase (PDB ID: 3HB5), crystal structure of Escherichia coli (PDB ID: 3T88), to identify the binding mode and the crucial functional groups interacting with the three proteins.  相似文献   

10.
A novel Schiff base ligand, namely 2,2′‐((1E,1′E)‐(1,3‐phenylenebis(azanylylidene))bis(methanylylidene))diphenol (H2L), was synthesized by condensation of m‐phenylenediamine and 2‐hydroxybenzaldehyde (in 1:2 ratio). Series of complexes were obtained from the reaction of La(III), Er(III) and Yb(III) chlorides with H2L. The ligand and complexes were characterized using elemental analysis, infrared, 1H NMR, UV–visible and mass spectroscopies, magnetic susceptibility and conductivity measurements and thermal analysis. Infrared and 1H NMR spectra indicated the coordination of the azomethine nitrogens and deprotonated phenolic oxygen atoms in a tetradentate manner (ONNO). The thermal behaviour of the complexes was studied from ambient temperature to 1000°C. The complexes were found to have water molecules of hydration and coordinated water molecules. The complexes were found to possess high biological activities against various organisms compared to the free ligand (Gram‐positive bacteria Staphylococcus aureus and Bacillus subtilis, Gram‐negative bacteria Salmonella sp., Escherichia coli and Pseudomonas aeruginosa and fungi Aspergillus fumigatus and Candida albicans). The more effective and probable binding modes between H2L with different active sites of colon cancer (PDB code: 2hq6) and lung cancer (PDB code: 1x2j) receptors were investigated using molecular docking studies.  相似文献   

11.
A novel azo dye ligand, 2,2′‐(1,3‐phenylenebis(diazene‐2,1‐diyl))bis(4‐chlorophenol), was synthesized from the diazotization of m ‐phenelyenediamine and coupling with p ‐chlorophenol in alkaline medium. Mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes of the azo ligand (H2L) were prepared and characterized using elemental analyses, infrared spectroscopy, electron spin resonance, magnetic susceptibility, conductance measurements and thermal analyses. The UV–visible, 1H NMR and mass spectra of the ligand and its chelates were also recorded. The analytical data showed that the metal‐to‐ligand ratio in the mononuclear azo complexes was 1:1. Diffuse reflectance and magnetic moment measurements revealed the complexes to have octahedral geometry. The infrared spectral data showed that the chelation behaviour of the ligand towards transition metal ions was through phenolic oxygen and azo nitrogen atoms. The electronic spectral results indicated the existence of π → π* (phenyl rings) and n → π* (─N═N) and confirmed the mentioned structure. Molar conductivity revealed the non‐electrolytic nature of all chelates. The presence of water molecules in all complexes was supported by thermal studies. Molecular docking was used to predict the binding between H2L and the receptors of breast cancer mutant 3hb5‐oxidoreductase, crystal structure of Escherichia coli (3 t88) and crystal structure of Staphylococcus aureus (3q8u). The molecular and electronic structure of H2L was optimized theoretically and the quantum chemical parameters were calculated. In addition, the effects of the H2L azo ligand and its complexes on the inhibition of bacterial or fungal growth were evaluated. The prepared complexes had enhanced activity against bacterial or fungal growth compared to the H2L azo ligand.  相似文献   

12.
A symmetric tetradentate Schiff base ligand bis(3‐methoxysalicylidene)‐o‐phenylenediamine (H2L) was prepared. A series of transition metal complexes with this Schiff base ligand have been synthesized and structurally characterized by IR and elemental analysis. The catalysis for reduction of thionyl chloride was studied by means of constant resistance discharge. The result shows that [Mn(III)LCl(H2O)]CH3OH and [Co(II)HLCl(H2O)] have a good catalytic activity for the reduction of thionyl chloride, which improves the cell voltage, the rate of discharge, and the lifetime of Li/SOCl2 batteries.  相似文献   

13.
New Schiff base (H2L) ligand is prepared via condensation of o-phthaldehyde and 2-aminophenol. The metal complexes of Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) with the ligand are prepared in good yield from the reaction of the ligand with the corresponding metal salts. They are characterized based on elemental analyses, IR, solid reflectance, magnetic moment, electron spin resonance (ESR), molar conductance, 1H NMR and thermal analysis (TGA). From the elemental analyses data, the complexes are proposed to have the general formulae [M(L)(H2O)nyH2O (where M = Mn(II) (n = 0, y = 1), Fe(II) (n = y = 0), Co(II) (n = 2, y = 0), Ni(II) (n = y = 2), Cu(II) (n = 0, y = 2) and Zn(II) (n = y = 0), and [MCl(L)(H2O)]·yH2O (where M = Cr(III) and Fe(III), y = 1–2). The molar conductance data reveal that all the metal chelates are non-electrolytes. IR spectra show that H2L is coordinated to the metal ions in a bi-negatively tetradentate manner with ONNO donor sites of the azomethine N and deprotonated phenolic-OH. This is supported by the 1H NMR and ESR data. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral (Cr(III), Fe(III), Co(II) and Ni(II) complexes), tetrahedral (Mn(II), Fe(II) and Zn(II) complexes) and square planar (Cu(II) complex). The thermal behaviour of these chelates is studied and the activation thermodynamic parameters, such as, E*, ΔH*, ΔS* and ΔG* are calculated from the DrTGA curves using Coats-Redfern method. The parent Schiff base and its eight metal complexes are assayed against two fungal and two bacterial species. With respect to antifungal activity, the parent Schiff base and four metal complexes inhibited the growth of the tested fungi at different rates. Ni(II) complex is the most inhibitory metal complex, followed by Cr(III) complex, parent Schiff base then Co(II) complex. With regard to bacteria, only two of the tested metal complexes (Mn(II) and Fe(II)) weakly inhibit the growth of the two tested bacteria.  相似文献   

14.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   

15.
Novel Schiff base (H2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H2L] complexes are found from the elemental analyses data having the formulae [M(H2L)Cl2yH2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H2L)Cl2]Cl·H2O, [Th(H2L)Cl2]Cl2·3H2O and [UO2(H2L)](CH3COO)2·2H2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO2(II) complexes are electrolytes. IR spectra show that H2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats–Redfern method. The ligand (H2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.  相似文献   

16.
A new Schiff base ligand named (E)‐2‐(((3‐aminophenyl)imino)methyl)phenol (HL) was prepared through condensation reaction of m‐phenylenediamine and 2‐hydroxybenzaldehyde in 1:1 molar ratio. The new ligand was characterized by elemental analysis and spectral techniques. The coordination behavior of a series of transition metal ions named Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II), Zn (II) and Cd (II) with the newly prepared Schiff base ligand (HL) is reported. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, IR, UV–Vis, 1H NMR, mass, electronic spectra, magnetic susceptibility and conductivity measurements and further their thermal stability was confirmed by thermogravimetric analysis (TG). From IR spectra, it was observed that the ligand is a neutral tridentate ligand coordinates to the metal ions through protonated phenolic oxygen, azomethine nitrogen and nitrogen atom of NH2 group. The existence, the number and the position of the water molecules was studied by thermal analysis. The molecular structures of the Schiff base ligand (HL) and its metal complexes were optimized theoretically and the quantum chemical parameters were calculated. The synthesized ligand and its complexes were screened for antimicrobial activities against bacterial species (Staphylococcus aureus and Bacillis subtilis, (gram positive bacteria)), (Salmonella SP., Escherichia coli and Pseudomonas aeruginosa, (gram negative bacteria)) and fungi (Aspergillus fumigatus and Candida albicans). The complexes were found to possess high biological activities against different organisms. Molecular docking was used to predict the efficiency of binding between Schiff base ligand (HL) and both receptors of Escherichia coli (3 T88) and Staphylococcus aureus (3Q8U). The receptor of Escherichia coli (3 T88) showed best interaction with Schiff base ligand (HL) compared to receptor of Staphylococcus aureu (3Q8U).  相似文献   

17.
The Cr (III), Mn (II), Fe (III), Co (II), Ni (II), Cu (II) and Cd (II) complexes were prepared by reaction of its metal chlorides with new azo-dye ligand (H2L). The ligand derived from 4,4′-oxydianiline and 2-amino-4-chlorophenol was synthesized in a 1:2 molar ratio. The structure of the ligand and its metal complexes was investigated using different tools such as elemental analysis (C, H, N and M), molar conductivity, IR, UV–vis, 1H-NMR, mass spectrometry and thermogravimetric and differential thermogravimetric studies. The data showed that the ligand acted as a N,N,O,O-binegative tetradentate ligand. All metal complexes had a octahedral structure as depicted by spectral and elemental analyses. The conductivity data showed the electrolytic nature of the Cr (III) and Fe (III) complexes while the other complexes were nonelectrolytes. Thermal analysis studies showed the decomposition of the complexes in four to five steps with the weight loss of hydrated water in the first decomposition step followed by the coordinated water and ligand molecules. Biological activity was tested for the prepared compounds against four bacterial species (Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and against two fungal species (Aspergillus fumigatus and Candida albicans). Also, all complexes were screened for anticancer activities against a breast cancer (MCF-7) cell line. The [Co(L)(H2O)2] complex showed the lowest IC50 value. Molecular docking is a key tool in computer drug design. Therefore, investigation of protein receptors and ligand interaction plays a vital role in the design of structurally based drugs. As a result, docking studies were investigated for H2L ligand, [Mn(L)(H2O)2] and [Ni(L)(H2O)2] complexes with 5KBC, 3V7B and 4G9M receptors.  相似文献   

18.
A series of homo‐, heterodinuclear and homotrinuclear copper(II) complexes containing a new Schiff base ligand and 1,10‐phenanthroline were synthesized. Based on results of elemental analyses, FTIR, 1H‐ and 13C‐NMR spectra, conductivity measurements and magnetic susceptibility measurements, the complexes had general compositions {[Cu(L)(H2O)M(phen)2](ClO4)2 [M = Cu(II), Mn(II), Co(II)]} and {[Cu3(L)2(H2O)2](ClO4)2}. The metal:L:phen ratio is 2:1:2 for the dinuclear copper(II) complexes and the metal:L ratio was 3:2 for the trinuclear copper(II) complex. The liquid–liquid extraction of various transition metal cations [Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II), Hg(II)] from the aqueous phase to the organic phase was carried out using the diimine–dioxime ligand. It was concluded that the ligand can effectively be used in solvent extraction of copper(II) from the aqueous phase to the organic phase. Furthermore, catalytic activitiy of the complexes for the disproportionation of hydrogen peroxide was also investigated in the presence of imidazole. Dinuclear copper(II)–manganese(II) complex has some similarity to manganese catalase in structure and activity. The interaction between these complexes and DNA has also been investigated by agarose gel electrophoresis; we found that the homo‐ and heterodinuclear copper complexes can cleave supercoiled pBR322 DNA to nicked and linear forms in the presence of H2O2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Transition metal complexes of Mn(II) and Ni(II) have been synthesized with novel bioactive Schiff's base ligand. Schiff's base ligand i.e. benzoylacetone‐bis(2‐amino‐4‐methylbenzothioazole) has been synthesized via condensation reaction between 2‐amino‐4‐methylbenzothioazole and benzoylacetone in 2:1 ratio, respectively. Synthesized ligand has been characterized using elemental analysis, infra‐red, 1H–NMR and mass spectroscopy techniques. Characterization of complexes was based on magnetic moment, molar conductance, elemental analysis, electronic spectra, infra‐red and EPR spectroscopic techniques. Molar conductance data suggest that metal complexes are non‐electrolytic in nature. Therefore, these complexes are formulated as [M(L)X2], where M = Mn(II), Ni(II), L = Schiff's base ligand, X = Cl?, CH3COO?, NO3?. Data of characterization study suggest octahedral geometry for Mn(II) and Ni(II) complexes. Geometry of metal complexes was also optimized with the help of computational study i.e. molecular modelling. Computational study also suggests octahedral geometry for complexes. Free ligand as well as its all metal complexes have been screened against the growth of pathogenic bacteria (E.coli, S.aureus) and fungi (C.albicans, C.krusei, C.parapsilosis, C.tropicalis) to assess their inhibition potential. The inhibition data revealed that metal complexes exhibit higher inhibition potential against the growth of bacteria and fungi microorganisms than free ligand.  相似文献   

20.
A series of transition metal (II/III) complexes containing organometallic Schiff base ligand (H2L) had been synthesized and characterized by using elemental analysis (C, H, N, M), molar conductivity, IR, UV–Vis, 1H NMR and mass spectral analysis. Also, their TG and DTG behaviors were investigated. The ligand was prepared by condensation of 4-aminosalicylic acid with 2-acetylferrocene in 1:1 M ratio. The data of elemental analysis indicated that the prepared complexes were synthesized also in a 1:1 M ratio. The ligand behaved as neutral bidentate ligand that coordinated to metal ions through protonated O-phenolic and protonated carboxylic-OH groups. All complexes had octahedral structure. DFT calculations for H2L ligand were determined with some parameters such as HOMO-LUMO energy gab, electronegativity and chemical hardness–softness. Antimicrobial activity of both H2L Schiff base ligand and its metal complexes was tested against different strains of bacteria and fungi species. Furthermore, all compounds had been screened for their anticancer activities against breast cancer (MCF-7) cell line. [Cu(H2L)(H2O)2Cl2]·2H2O complex had the lowest IC50 value = 47.3 µg/mL. For determining the more effective and probable binding mode between the H2L ligand, Co(II) and Zn(II) complexes with different active sites of 4K3V, 2YLB and 3DJD receptors, so molecular docking studies were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号