首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The reaction of phenyl-substituted dipotassium germacyclo-pentadienediide with one equivalent of hafnocene dichloride at low temperature provides a bicyclic germylene. With two equivalents of hafnocene dichloride, a dinuclear hafnium complex with a mmm-coordinating germolyl dianion ligand is formed.  相似文献   

2.
The isolable ylide-like N-heterocyclic germylene LGe: (2) {L = CH[(C=CH(2))CMe][N(aryl)](2), aryl = 2,6-(i)Pr(2)C(6)H(3)} shows an unprecedented dual reactivity toward terminal alkynes: its reaction with acetylene leads via [4+2] cycloaddition to the novel intramolecular donor stabilised germylene 3, while conversion of phenylacetylene furnishes the analogous cycloadduct 4 along with a C-H bond activation product, the novel N-donor stabilised alkynyl germylene 5.  相似文献   

3.
The versatile reactivities of disilenides and digermenide, heavier analogues of vinyl anions, have significantly expanded the pool of silicon and germanium compounds with various unexpected structural motifs in the past two decades. We now report the synthesis and isolation of a cyclic heteronuclear vinyl anion analogue with a Si=Ge bond, potassium silagermenide as stable thf‐solvate and 18‐c‐6 solvate by the KC8 reduction of germylene or digermene precursors. Its suitability as synthon for the synthesis of functional silagermenes is proven by the reactions with chlorosilane and chlorophospane to yield the corresponding silyl‐ and phosphanyl‐silagermenes. X‐ray crystallographic analysis, UV/Vis spectroscopy and DFT calculations revealed a significant degree of π‐conjugation between N=C and Si=Ge double bonds in the title compound.  相似文献   

4.
The reaction of tetrakis(2‐tert‐butyl‐4, 5, 6‐trimethylphenyl)digermene, which dissociates into germylene molecules in solution, with hexafluorobut‐2‐yne furnishes the corresponding germacyclopropene 3 by a [1+2] cycloaddition of the germylene to the C≡C triple bond. The X‐ray structure analysis of 3 reveals a short C=C double bond length of 132.4(5) pm and an acute C—Ge—C bond angle of 39.93(14)°.  相似文献   

5.
For the stable germylene, N,N'-di-tert-butyl-1,3-diaza-2-germacyclopent-4-en-2-ylidene, 2, the Raman line for the cyclic C=C stretching mode is strongly enhanced and shifted to longer wavelength, compared with that in reference compounds. The enhancement and frequency shift are even greater than those found for the corresponding stable silylene 1. These results, along with NMR evidence and theoretical calculations, suggest that the aromatic electron delocalization is even greater in the germylene than that in the silylene.  相似文献   

6.
The first three representatives of a new family of volatile organohafnium compounds suitable as metallo-organic chemical vapour deposition precursors were synthesized. A combination of cyclopentadienyl and alkoxo-ligands with a bicyclo[2.2.1]heptanc framework was used. Volatility at relatively low temperatures for hafnium compounds was found and the precursors were characterized by elemental analysis and spectroscopic methods (IR, 1H and 13C NMR, mass spectrometry and mass-analysed ion kinetic energy spectroscopy). The outlook for use in hafnium functional materials synthesis was derived from the fragmentation data.  相似文献   

7.
During thermolysis of the 7-germanorbornadiene 1 in chlorobenzene at 70°C in the presence of concentrated hydrochloric acid, besides the well-known formation of free germylene Me2Ge and its consecutive product dimethylchlorogermane 2, the polar splitting of only one Ge---C bond in 1 has been observed for the first time. It does not yield Me2Ge, but instead it rapidly forms the 1-germyl-1,4-dihydronaphthalene 3. The kinetics of this reaction at 53°C are of 2nd order, t1/2 = 20 min, k = 0.22 l mol−1 min−1. At room temperature 3 is formed quantitatively. Also, at 70°C the slower formation of the germylene Me2Ge from 1 can be suppressed completely if HCl gas is bubbled through the reaction mixture, thus favouring the rapid formation of 3. As a by-product the 1,2-dihydronaphthalene 5 is generated.  相似文献   

8.
An efficient synthesis of 2-di-tert-butylphosphanylmethylpyrrole (HpyrmPtBu2), by treating 2-dimethylaminomethylpyrrole (HpyrmNMe2) with tBu2PH at 135 °C in the absence of any solvent, has allowed the preparation of the new PGeP germylene Ge(pyrmPtBu2)2 ( 1 ), by treating [GeCl2(dioxane)] with LipyrmPtBu2, in which the Ge atom is stabilized by intramolecular interactions with one (solid state) or both (solution) of its phosphane groups. Reactions of germylene 1 with Group 10 metal dichlorido complexes containing easily displaceable ligands have led to [MCl{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] [M=Ni ( 2 ), Pd ( 3 ), Pt ( 4 )], which have an unflawed square-planar metal environment. Treatment of germylene 1 with [AuCl(tht)] (tht=tetrahydrothiophene) rendered [Au{κ3P,Ge,P-GeCl(pyrmPtBu2)2}] ( 5 ), which is a rare case of a T-shaped gold(I) complex. The hydrolysis of 5 gave the linear gold(I) derivative [Au(κP-HpyrmPtBu2)2]Cl ( 6 ). Complexes 2 – 5 contain a PGeP pincer chloridogermyl ligand that arises from the insertion of the Ge atom of germylene 1 into a M−Cl bond of the corresponding metal reagent. The bonding in these molecules has been studied by DFT/NBO/QTAIM calculations. These results demonstrate that the great flexibility of germylene 1 makes it a better precursor to PGeP pincer complexes than the previously known germylenes of this type.  相似文献   

9.
An N,P‐heterocyclic germylene/B(C6F5)3 Lewis adduct 2 presenting multi‐reactive sites (P/B Lewis pair, germylene, Ge=P π‐bond) is reported. In contrast to classical frustrated Lewis pairs or divalent Group 14 element species, 2 is able to activate two small molecules simultaneously. Of particular interest, 2 reacts with silanes leading to the formation of original cationic germylenes 3 , and can be used as a metal‐free catalyst for selective CO2‐hydrosilylation to H2C(OSiEt3)2.  相似文献   

10.
A novel mononuclear germylene, Ge[1,8-((i)PrN)(2)C(10)H(6)] (1), was isolated as a stable crystalline solid by the reaction of Li(2)[1,8-((i)PrN)(2)C(10)H(6)] with GeCl(2)(1,4-dioxane). Structural examination of 1 shows that this compound possesses a planar six-membered heterocyclic ring system with a Ge(II) center and that the steric impact of the substituents on the nitrogen centers is greater than that for the related five-membered metalloheterocycles. Compound 1 is readily oxidized with elemental S and Se and the structural details for the dinuclear product [[1,8-((i)PrN)(2)C(10)H(6)]Ge(micro-S)](2) are reported. Furthermore, the lone pair of electrons on the Ge(II) center in 1 allows this species to function as a novel ligand for the preparation of the unique tetrakis(germylene) complex Ni[Ge[((i)PrN)(2)C(10)H(6)]](4) (4). The structural features of 4 are reported and show that the germylene ligand, when coordinated to the Ni(0) center, now exhibited a twisted (nonplanar) heterometallocycle and a cone angle of 145 degrees.  相似文献   

11.
In the direct synthesis of silicon compounds by reactions of elemental silicon with methyl chloride, methanol and hydrogen chloride, silylene formed on surface of silicon grains during the reaction is an intermediate. The reaction of surface silylene with a variety of unsaturated hydrocarbons provides new direct synthesis of organosilanes. In the direct synthesis of methylchlorogermanes from elemental germanium, surface germylene is not an intermediate, while tetrachlorogermane is synthesized by the direct reaction of germanium with hydrogen chloride via dichlorogermylene intermediate. Various unsaturated hydrocarbons or organic chlorides added to the system of tetrachlorogermane synthesis give new methods for the synthesis of organogermanes.  相似文献   

12.
In the direct synthesis of silicon compounds by reactions of elemental silicon with methyl chloride, methanol and hydrogen chloride, silylene formed on surface of silicon grains during the reaction is an intermediate. The reaction of surface silylene with a variety of unsaturated hydrocarbons provides new direct synthesis of organosilanes. In the direct synthesis of methylchlorogermanes from elemental germanium, surface germylene is not an intermediate, while tetrachlorogermane is synthesized by the direct reaction of germanium with hydrogen chloride via dichlorogermylene intermediate. Various unsaturated hydrocarbons or organic chlorides added to the system of tetrachlorogermane synthesis give new methods for the synthesis of organogermanes.  相似文献   

13.
Intramolecular germylene, stannylene, and plumbylene Lewis pairs were reacted with hexanal and yielded the cyclic addition products only with the germanium and tin reagents. In further reactivity studies, the hydroboration of aldehydes and ketones catalyzed by intramolecular germylene, stannylene, and plumbylene Lewis pairs was studied. In the case of the cyclic germylene Lewis pair, the product of the oxidative addition of pinacolborane at the germylene moiety was observed. According to stoichiometric as well as catalytic experiments, the intramolecular germylene Lewis pair acts as a catalyst in the hydroboration of aldehydes and ketones. The homologous stannylene Lewis pair forms a reactive tin hydride during the catalysis, which can also act as a catalyst in this transformation.  相似文献   

14.
Intramolecular germylene, stannylene, and plumbylene Lewis pairs were reacted with hexanal and yielded the cyclic addition products only with the germanium and tin reagents. In further reactivity studies, the hydroboration of aldehydes and ketones catalyzed by intramolecular germylene, stannylene, and plumbylene Lewis pairs was studied. In the case of the cyclic germylene Lewis pair, the product of the oxidative addition of pinacolborane at the germylene moiety was observed. According to stoichiometric as well as catalytic experiments, the intramolecular germylene Lewis pair acts as a catalyst in the hydroboration of aldehydes and ketones. The homologous stannylene Lewis pair forms a reactive tin hydride during the catalysis, which can also act as a catalyst in this transformation.  相似文献   

15.
The insertion reactions of germylene into C-CI bond of 1-chorobenzene have been explored using density functional theory.Five germylene species have been chosen for systematically studying. All the stationary points were determined at the B3LYP/6-311 +G (d, p) level of the theory. The results show that, the smaller the AEsT of germylene, the lower the barrier height, and the electropositive substituents on the germylene can increase the reaction activity and exothermicity of insertion into C-CI bond of 1-chorobenzene.  相似文献   

16.
Gibbs thermodynamic potentials of oxidation of zirconium and hafnium diborides with molecular and atomic oxygen and nitrogen monoxide were calculated for a temperature range of 20–2500°C. Oxidation of zirconium and hafnium borides with atomic oxygen was found to be the most expected reaction. The probability of oxidation is lower for zirconium boride than that for hafnium boride.  相似文献   

17.
The mechanism of the cycloaddition reaction between singlet state dichlorosilylene germylidene (Cl2Si=Ge:) and ethene has been investigated with CCSD(T)//MP2/6-31G* method, from the potential energy profile, we predict that the reaction has one dominant reaction pathway. The presented rule of the reaction is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Due to the sp 3 hybridization of the Ge: atom in Si-heterocyclic four-membered ring germylene, the Si-heterocyclic four-membered ring germylene further combined with the ethene to form a bis-heterocyclic compound with Si and Ge.  相似文献   

18.
Despite the explosive growth of germylene compounds as ligands in transition metal complexes, there is a modicum of precedence for the germylene zinc complexes. In this work, the synthesis and characterization of new germylene zinc complexes [PhC(NtBu)2Ge{N(SiMe3)2}→ZnX2]2 (X= Br ( 2 ) and I ( 3 )) supported by (benz)‐amidinato germylene ligands are reported. The solid‐state structures of 2 and 3 have been validated by single‐crystal X‐ray diffraction studies, which revealed the dimeric nature of the complexes, with distorted tetrahedral geometries around the Ge and Zn center. DFT calculations reveal that the Ge–Zn bonds in 2 and 3 are dative in nature. The reaction of 2 with elemental sulfur resulted in the first structurally characterized germathione stabilized ZnBr2 complexes PhC(NtBu)2Ge(=S){N(SiMe3)2}→ZnBr2 ( 5 ). Therefore, the Ge=S in 5 is in‐between Ge–S single and Ge=S double bond length, owing to the coordination of a sulfur lone pair of electrons to ZnBr2.  相似文献   

19.
The H2Ge=Ge:, as well as and its derivatives (X2Ge=Ge:, X=H, Me, F, Cl, Br, Ph, Ar, : : :) is a kind of new species. Its cycloaddition reactions is a new area for the study of germy-lene chemistry. The mechanism of the cycloaddition reaction between singlet Me2Ge=Ge: and acetaldehyde was investigated with the B3LYP/6-31G* method in this work. From the potential energy profile, it could be predicted that the reaction has one dominant re-action pathway. The reaction rule is that the two reactants firstly form a four-membered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the π orbital of acetaldehyde forming a π→p donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with acetaldehyde to form an intermedi-ate. Because the Ge atom in intermediate happens sp3 hybridization after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between Me2Ge=Ge: and ac-etaldehyde, and lays the theory foundation of the cycloaddition reaction between H2Ge=Ge: and its derivatives (X2Ge=Ge:, X=H, Me, F, Cl, Br, Ph, Ar, : : :) and asymmetric π-bonded compounds, which are significant for the synthesis of small-ring and spiro-Ge-heterocyclic ring compounds.  相似文献   

20.
The reaction system GeCl2 ⋅ dioxane/LiSTsi (Tsi=C(SiMe3)3) opens a fruitful area in germanium chemistry, depending on the stoichiometry and solvent used during the reaction. For example, the reaction of GeCl2 ⋅ dioxane in toluene with two equivalents of the thiolate gives the expected germylene Ge(STsi)2 in excellent yield. This germylene readily reacts with hydrogen and acetylene, however, in a non-selective way. By using an excess amount of the thiolate and toluene as the solvent, the germanide [Ge(STsi)3][Li(thf)] is obtained. Performing the same reaction in thf leads to a C−H activation of thf to give (H7C4O)Ge[STsi](μ2-S)2Ge[STsi]2, in which the thf molecule is still intact. Using a sub-stoichiometric amount of the thiolate leads to the heteroleptic compound [ClGe(STsi)]2 and to the insertion product (thf)Ge[S-GeCl2-Tsi]2, in which additional GeCl2 molecules insert into the C−S bonds of Ge(STsi)2. The synthesis and the experimentally determined structures of all compounds are presented together with first reactivity studies of Ge(STsi)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号