首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article focuses on the utility of organotrifluoroborate salts as coupling partners for Suzuki–Miyaura cross‐coupling with 4‐nitro‐6‐triflyl benzimidazoles using microwave irradiation. The C–C bond formation at the 6‐position of the electron‐rich 1‐,4‐,6‐trisubstituted benzimidazole core is challenging and was not achievable via Kumada, Negishi, Stille, or Heck coupling strategies. Yields of 37–70% could be obtained via palladium coupling strategies utilizing potassium benzyl trifluoroborates as the organometallic coupling partner.  相似文献   

2.
Suzuki–Miyaura cross‐coupling reactions between a variety of alkyl halides and unactivated aryl boronic esters using a rationally designed iron‐based catalyst supported by β‐diketiminate ligands are described. High catalyst activity resulted in a broad substrate scope that included tertiary alkyl halides and heteroaromatic boronic esters. Mechanistic experiments revealed that the iron‐based catalyst benefited from the propensity for β‐diketiminate ligands to support low‐coordinate and highly reducing iron amide intermediates, which are very efficient for effecting the transmetalation step required for the Suzuki–Miyaura cross‐coupling reaction.  相似文献   

3.
This paper describes a simple and a very quick protocol for biaryl synthesis using the Suzuki–Miyaura cross‐coupling reaction. A quintessential role of salting‐out agent LiCl was observed in the Suzuki–Miyaura cross‐coupling reaction that enhanced the reduction rate of Pd (II) to a considerable extent, resulting in the formation of nanosized palladium in a few seconds. The isolated Pd nanoparticles were characterized with X‐ray diffraction, dynamic light scattering, TGA, transmission electron microscopy and scanning electron microscopy‐dispersive X‐ray spectroscopy. The Suzuki–Miyaura cross‐coupling reaction proceeded very well with the in situ‐generated Pd nanocatalysts furnishing the desired biaryl adducts with excellent yields.  相似文献   

4.
Pd/C‐catalyzed Suzuki–Miyaura cross‐coupling between aryl bromides and arylboronic acids in 50% methanol aqueous solution proceeded smoothly in the presence of 18‐crown‐6. Various aryl bromides bearing electron‐withdrawing groups and electron‐donating groups coupled with arylboronic acid in high yields. In addition, the catalyst could be recycled five times without loss of activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A combination of a tertiary amine‐based palladacycle and an N‐heterocyclic carbene ligand precursor ( 1 , N,N‐bis‐mesityl‐4,5‐dihydroimidazolium chloride) has been applied to catalyze the Suzuki‐Miyaura cross‐coupling of aryl halides with arylboronic acids. The substrate scope is general: a variety of electron rich and deficient aryl halides (I, Br, Cl) and arylboronic acids were found to undergo the cross‐coupling reaction in good to excellent yields at low catalyst loading of 0.01–1 mol%.  相似文献   

6.
Arylated benzofurans were prepared by regioselective Suzuki–Miyaura cross‐coupling reactions of 2,3‐dibromobenzofuran. The reactions proceeded with very good site‐selectivity in favor of the more electron deficient position 2. The Suzuki–Miyaura reactions of 2,3,5‐tribromobenzofuran also proceeded in favor of position 2.  相似文献   

7.
Copper‐catalyzed Suzuki–Miyaura‐type cross‐coupling and carboboration processes are reported. The cross‐couplings function well with a variety of substituted aryl iodides and aryl boronic esters and allows for orthogonal reactivity compared to palladium‐catalyzed processes. The carboboration method includes both alkynes and allenes and provides access to highly substituted and stereodefined vinyl boronic esters. The alkyne carboboration method is highlighted in the simple one‐pot synthesis of Tamoxifen.  相似文献   

8.
A simple, air‐stable, inexpensive and easily prepared molecule, N‐methyliminodiacetic acid (MIDA), is reported as a ligand for palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction of phenylboronic acid with aryl chlorides. The yield of the corresponding Suzuki coupling reaction is up to around 90% at both high temperature of 80°C and room temperature under ambient atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A heterogeneous montmorillonite K‐10‐supported palladium triphenylphosphine catalyst is reported for the Suzuki–Miyaura cross‐coupling reaction at room temperature. A library of electronically diverse aryl bromides and arylboronic acids underwent the cross‐coupling reaction at very good rates in aqueous solvent. The reusability of the catalyst was also examined and it was found to be effective up to three catalytic cycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A new nickel(II) σ‐aryl complex, trans‐chloro(9‐phenanthrenyl)bis(triphenylphosphine)nickel(II), was used as a precatalyst for the Suzuki–Miyaura coupling reactions of aryl chlorides. The catalytic conditions were optimized by investigating the cross‐coupling of p‐chloroanisole with phenylboronic acid. The results show that this complex is efficient for both electron‐rich and electron‐deficient aryl chlorides, though it gives better yields for activated arylboronic acids than deactivated ones. All isolated cross‐coupled biaryl products have been characterized by 1H and 13C NMR, and their spectral data are consistent with those reported. Side products from the coupling of arylboronic acid with the precatalyst complex have also been isolated and characterized, which is helpful for understanding the coupling mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Palladium nanoparticles were supported on a bed of Fe3O4@‐NH2@Murexide using a simple and efficient method, and characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies and inductively coupled plasma optical emission spectrometry. The catalytic system showed great efficiency in cross‐coupling reaction of aryl iodides and arylboronic acid and in Sonogashira cross‐coupling reaction in the green solvent EtOH–H2O (1:1). The isolation and recovery of the catalyst were simple and facile and it could be used for several successive Suzuki–Miyaura coupling and Sonogashira cross‐coupling reactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
In this work, an easily obtained procedure was successfully implemented to prepare novel palladium nanoparticles decorated on triethanolammonium chloride ionic liquid‐functionalized TiO2 nanoparticles [TiO2/IL‐Pd]. Different methods were carried out for characterizations of the synthesized nanocatalyst (HR‐TEM, XPS, XRD, FE‐SEM, EDX, FT‐IR and ICP). TiO2/IL‐Pd indicated good catalytic activity for the Suzuki–Miyaura cross‐coupling reaction of arylboronic acid with different aryl halides in aqueous media at ambient temperature. The recycled catalyst was investigated with ICP to amount of Pd leaching after 6 times that had diminished slightly, Thus, was confirmed that the nanocatalyst has a good sustainability for C–C Suzuki–Miyaura coupling reaction. The catalyst can be conveniently separated by filtration of the reaction mixture and reused for 6 times without significant loss of its activity. It supplies an environmentally benign alternative path to the existing protocols for the Suzuki–Miyaura reaction.  相似文献   

13.
A series of salicylaldimine ligands were designed to promote palladium‐catalyzed Suzuki–Miyaura cross‐coupling reaction. After a screening process, a ligand with a bulky 2,4‐di‐tert‐butyl substituent on the salicyaldehyde backbone and cyclohexylamine moiety was found to serve as a good combination for this reaction in aqueous solutions of DMF. The protocol demonstrated a significant advance in the efficiency of the cross‐coupling of aryl bromides and aryl chlorides with arylboronic acids to produce the desired biaryl products. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A convenient synthetic pathway enabling D ‐glucal and D ‐galactal pinacol boronates to be prepared in good isolated yields was achieved. Both pinacol boronates were tested in a series of cross‐coupling reactions under Suzuki–Miyaura cross‐coupling conditions to obtain the corresponding aryl, heteroaryl, and alkenyl derivatives in high isolated yields. This methodology was applied to the formal synthesis of the glucopyranoside moiety of papulacandin D and the first total synthesis of bergenin.  相似文献   

15.
A concise and efficient synthesis of densely substituted novel pyrazoles with alkynyl, aryl and ferrocenyl functionalities is reported, providing a platform for biological studies. The general strategy involves Sonogashira and Suzuki–Miyaura cross‐coupling reactions of easily obtainable 5‐ferrocenyl/phenyl‐4‐iodo‐1‐phenylpyrazoles with terminal alkynes and boronic acids, respectively. The starting 4‐iodopyrazoles were synthesized by electrophilic cyclization of α,β‐alkynic hydrazones with molecular iodine. Sonogashira reactions have been achieved by employing 5 mol% PdCl2(PPh3)2, 5 mol% CuI, excess Et3N and 1.2 equiv. of terminal alkyne, relative to 4‐iodopyrazole, in tetrahydrofuran at 65 °C, while Suzuki–Miyaura reactions have been accomplished using 5 mol% PdCl2(PPh3)2 and 1.4 equiv. of both boronic acid/ester and KHCO3, with respect to 4‐iodopyrazole, in 4:1 dimethylformamide–H2O solution at 110 °C. Both Sonogashira and Suzuki–Miyaura coupling reactions have proven effective for the synthesis of alkynyl‐, aryl‐ and ferrocenyl‐substituted pyrazoles and demonstrated good tolerance to a diverse range of substituents, including electron‐donating and electron‐withdrawing groups. These coupling approaches could allow for the rapid construction of a library of functionalized pyrazoles of pharmacological interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
This Minireview highlights advances in the Suzuki–Miyaura cross‐coupling of secondary boron reagents for the creation of C? C bonds with control of stereochemistry. It also includes non‐transition‐metal coupling of secondary and tertiary boronic esters to electron‐rich aromatics.  相似文献   

17.
Two new palladium complexes with a pyracene‐linked bis‐imidazolylidene (pyrabim) group have been obtained and fully characterized. The related monometallic analogues were obtained from the coordination of an acetanaphthene‐supported N‐heterocyclic carbene (NHC). The catalytic properties of all complexes were studied in the acylation of aryl halides with hydrocinnamaldehyde, and in the Suzuki–Miyaura coupling of aryl halides and aryl boronic acids. The results show that the presence of a second metal in the dimetallic complexes induces some benefits in the catalytic behavior of the complexes. This effect is more pronounced in the Suzuki–Miyaura coupling, for which the dimetallic complexes exhibit significantly higher activity than their monometallic counterparts.  相似文献   

18.
In this work, ortho‐palladated complexes [Pd(µ‐Cl)(C6H4CH2 NRR′‐κ2‐C,N)]2 and [Pd(C6H4CH2NH2‐2‐C,N)Cl(Y)] were tested in the Suzuki–Miyaura cross‐coupling reaction. Cyclopalladated Pd(II) complexes as thermally stable catalysts can activate aryl bromides and chlorides. These complexes were active and efficient catalysts for the Suzuki–Miyaura reaction of aryl bromides and even less reactive aryl chlorides. The cross‐coupled products of a variety of aryl bromides and aryl chloride with phenylboronic acid in methanol as solvent at 60 °C were produced in excellent yields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The first Ni‐catalyzed Suzuki–Miyaura coupling of amides for the synthesis of widely occurring biaryl compounds through N?C amide bond activation is reported. The reaction tolerates a wide range of electron‐withdrawing, electron‐neutral, and electron‐donating substituents on both coupling partners. The reaction constitutes the first example of the Ni‐catalyzed generation of aryl electrophiles from bench‐stable amides with potential applications for a broad range of organometallic reactions.  相似文献   

20.
Biguanidine‐functionalized chitosan was synthesized and combined with palladium nanoparticles to yield a recyclable, environmentally benign, heterogeneous catalytic system for the Suzuki–Miyaura C–C coupling reaction. The catalyst was characterized using various techniques. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes, with phenylboronic acid to give biaryls without any additive or ligand. A reusability test demonstrated that the catalyst was highly efficient even after six runs. Solid‐phase poisoning and leaching tests indicated that the catalyst has a heterogeneous nature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号