首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 686 毫秒
1.
Fluorocarbons often have distinct miscibility properties compared to their nonfluorinated analogues. These differences may be attributed to van der Waals dispersion forces or solvophobic effects, but their contributions are notoriously difficult to separate in molecular recognition processes. Here, molecular torsion balances were used to compare cohesive alkyl and perfluoroalkyl interactions in a range of solvents. A simple linear regression enabled the energetic partitioning of solvophobic and van der Waals forces in the self‐association of apolar chains. The contributions of dispersion interactions in apolar cohesion were found to be strongly attenuated in solution compared to the gas phase, but still play a major role in fluorous and organic solvents. In contrast, solvophobic effects were found to be dominant in driving the association of apolar chains in aqueous solution. The results are expected to assist the computational modelling of van der Waals forces in solution.  相似文献   

2.
A carbonaceous dumbbell was able to spontaneously glue two tubular receptors to form a unique two‐wheeled composite through van der Waals interactions, thus forcing the wheel components into contact with each other at the edges. In the present study, two tubular receptors with enantiomeric carbon networks were assembled on the dumbbell joint, and the handedness of the receptors was discriminated, thus leading to the self‐sorting of homomeric receptors from a mixture of enantiomeric tubes. The crystal structures of the composites revealed the structural origins of the molecular recognition driven by van der Waals forces as well as the presence of a columnar array of C120 molecules in a 1:1 composite.  相似文献   

3.
A carbonaceous dumbbell was able to spontaneously glue two tubular receptors to form a unique two‐wheeled composite through van der Waals interactions, thus forcing the wheel components into contact with each other at the edges. In the present study, two tubular receptors with enantiomeric carbon networks were assembled on the dumbbell joint, and the handedness of the receptors was discriminated, thus leading to the self‐sorting of homomeric receptors from a mixture of enantiomeric tubes. The crystal structures of the composites revealed the structural origins of the molecular recognition driven by van der Waals forces as well as the presence of a columnar array of C120 molecules in a 1:1 composite.  相似文献   

4.
A new concept for constructing supramolecular architectures is discussed. In addition to van der Waals and hydrogen‐bonding intermolecular interactions that primarily account for supramolecular structures for all materials lacking extended 3D network structures, directional, long, multicenter bonding that can occur for anionic, cationic, neutral, and zwitterionic radicals and can direct intermolecular recognition through π interactions and form extended network supramolecular structural motifs.  相似文献   

5.
新型Schiff碱分子钳对中性分子的识别性能研究   总被引:4,自引:0,他引:4  
采用差紫外光谱法考察了3种新型Schiff碱分子钳对一系列二苯甲酮、芳香二胺的识别性能.测定了主客体间的结合常数(Ka)和自由能变化(ΔG0).结果表明,分子钳对所考察的客体显示良好的识别作用,主客体间形成1:1型超分子配合物.讨论了识别作用的推动力与形状、大小匹配和几何互补等因素对形成主客体配合物的影响,并利用核磁氢谱与计算机模拟作为辅助手段对主要的实验结果与现象进行了解释.  相似文献   

6.
The unique self‐assembling features of N‐annulated perylene bisimides (PBIs) 1 and 2 are reported. The stability of the aggregates of diester 1 , in which no H‐bonding interactions are operative, corroborates the significance of long‐range van der Waals and dipole–dipole electrostatic interactions in the construction of stable supramolecular assemblies. The incorporation of amide functional groups within the N‐annulated PBI in 2 stimulates pathway differentiation to achieve up to three J‐type aggregates and a fourth H‐type aggregate depending on the experimental conditions. The results presented demonstrate unprecedented levels of control over synthetic supramolecular self‐assembly and the rich differentiation that N‐annulated PBIs exhibit, opening the door to new, complex, functional supramolecular materials.  相似文献   

7.
The self‐assembly behavior of the yeast‐derived bolaamphiphile sophorolipid (SL) is generally studied under acidic/neutral pH conditions, at which micellar and fibrillar aggregates are commonly found, according to the (un)saturation of the aliphatic chain: the cis form, which corresponds to the oleic acid form of SL, spontaneously forms micelles, whereas the saturated form, which corresponds to the stearic acid form of SL, preferentially forms chiral fibers. By using small‐angle light and X‐ray scattering (SLS, SAXS) combined with high‐sensitivity transmission electron microscopy imaging under cryogenic conditions (cryo‐TEM), the nature of the self‐assembled structures formed by these two compounds above pH 10, which is the pH at which they are negatively charged due to the presence of a carboxylate group, has been explored. Under these conditions, these compounds self‐assemble into nanoscale platelets, despite the different molecular structures. This work shows that the electrostatic repulsion forces generated by COO? mainly drive the self‐assembly process at basic pH, in contrast with that found at pH below neutrality, at which self‐assembly is driven by van der Waals forces and hydrogen bonding, and thus, is in agreement with previous findings on carbohydrate‐based gemini surfactants.  相似文献   

8.
An acid–base switchable [c2]daisy chain rotaxane terminated with two 2,6‐diacetylamino pyridine units has been self‐assembled with a bis(uracil) linker. The complementary hydrogen‐bond recognition patterns, together with lateral van der Waals aggregations, result in the hierarchical formation of unidimensional supramolecular polymers associated in bundles of muscle‐like fibers. Microscopic and scattering techniques reveal that the mesoscopic structure of these bundles depends on the extended or contracted states that the rotaxanes show within individual polymer chains. The observed local dynamics span over several length scales because of a combination of supramolecular and mechanical bonds. This work illustrates the possibility to modify the hierarchical mesoscopic structuring of large polymeric systems by the integrated actuation of individual molecular machines.  相似文献   

9.
Supramolecular chemistry is a field of scientific exploration that probes the relationship between molecular structure and function. It is the chemistry of the noncovalent bond, which forms the basis of highly specific recognition, transport, and regulation events that actuate biological processes. The classic design principles of supramolecular chemistry include strong, directional interactions like hydrogen bonding, halogen bonding, and cation-π complexation, as well as less directional forces like ion pairing, π-π, solvophobic, and van der Waals potentials. In recent years, the anion-π interaction (an attractive force between an electron-deficient aromatic π system and an anion) has been recognized as a hitherto unexplored noncovalent bond, the nature of which has been interpreted through both experimental and theoretical investigations. The design of selective anion receptors and channels based on this interaction represent important advances in the field of supramolecular chemistry. The objectives of this Review are 1) to discuss current thinking on the nature of this interaction, 2) to survey key experimental work in which anion-π bonding is demonstrated, and 3) to provide insights into the directional nature of anion-π contact in X-ray crystal structures.  相似文献   

10.
《Liquid crystals》1997,22(5):579-583
A supramolecular mesophase was prepared from molecular recognition directed self- assembly of two complementary molecular components, namely 5-(4-dodecyloxy- benzylidene)-2,4,6-(1H,3H)-pyrimidinetrione and 4-amino-2,6-didodecylamino-1,3,5triazine. Differential scanning calorimetry measurements indicate a mesophase having liquid crystalline properties. Infrared studies suggest that not only hydrogen bonds but also pi-aromatic stacking and van der Waals interactions direct the formation of the mesophase.  相似文献   

11.
《化学:亚洲杂志》2017,12(1):52-59
Two dumbbell‐shaped organogelators with a p ‐quaterphenylene core were synthesized, and their self‐assembly properties were investigated. These low‐molecular‐weight gelators could form self‐supporting gels in many apolar organic solvents with an H‐type aggregation form through a synergic effect of π–π stacking, intermolecular translation‐related hydrogen bonding, and van der Waals forces. In comparison to the p ‐terphenylene‐cored gelator, the extended π‐conjugated segment improved the gelation efficiency significantly with enhanced gelation rate. Additionally, these p ‐quaterphenylene‐centered gelators exhibited strong fluorescence emission induced by aggregation, which not only provided an in situ method to optically monitor the gelation process, but also endowed these self‐assemblies with substantial applications in sensing explosives.  相似文献   

12.
A concept for the interactions between π‐systems is necessary to understand a number of phenomena in modern material sciences such as supramolecular properties and self‐assembly. In the present article, we investigate the intermolecular interaction energies between organic semiconductors with extended π‐systems using SAPT (symmetry‐adapted perturbation theory), LMO‐EDA (localized molecular orbital energy decomposition analysis), DFT‐D (density functional theory including dispersion corrections), and force‐field approaches. Both apolar organic molecules such as acenes and highly polarized π‐systems of merocyanines and squaraines were used to probe the influence of electrostatics on the shape of the potential energy surfaces (PES) governing the geometric structures of aggregates. Our results reveal that the shapes of the PESs result from variations in the short‐range, highly specific repulsion forces even for highly polar molecules. Using distributed quadrupoles, we show that it is nevertheless possible to mimic the intermolecular potentials with electrostatics. This is also possible with van‐der‐Waals potentials and a simple overlap‐based force‐field ansatz based on the overlap between p‐orbitals. © 2016 Wiley Periodicals, Inc.  相似文献   

13.
A “chirality driven self‐sorting” strategy is introduced for the controlled supramolecular organization of donor (D) and acceptor (A) molecules in multicomponent assemblies. The trans‐1,2‐bis(amido)cyclohexane (trans‐BAC) has been identified as a supramolecular motif with strong homochiral recognition to direct this chirality controlled assembly process of enantiomers in solution. Stereoselective supramolecular polymerization of trans‐BAC appended naphthalene diimide monomers (NDIs) has been probed in detail by spectroscopic and mechanistic investigations. This chirality‐driven self‐sorting design of enantiomeric components also offers to realize mixed and segregated D‐A stacks by supramolecular co‐assembly of the NDI acceptors with trans‐BAC appended dialkoxynaphthalene (DAN) donor monomers. Such an unprecedented chirality control on D‐A organization paves the way for the creation of supramolecular p‐n nanostructures with controlled molecular‐level organization.  相似文献   

14.
The study of the organization of small π‐conjugated molecules is imperative to understanding and controlling its properties for various applications. Coronene bisimides (CBIs) are potential candidates for novel liquid‐crystalline materials and active n‐type semiconductor molecules in organic electronics. To understand the self‐assembly of this seldom‐studied chromophore, we have designed two derivatives of CBIs bearing chiral and achiral 3,4,5‐trialkoxyphenyl groups at the imide position, named as CBI‐GCH and CBI‐GACH , respectively. CBI‐GCH self‐assembles mainly through π‐stacking and van der Waals interactions in nonpolar methylcyclohexane to result in long 1D fibrillar stacks. The mechanism of supramolecular polymerization was probed by using chiroptical studies, which showed an isodesmic pathway for CBI‐GCH . The thermodynamic parameters that govern the self‐assembly are detailed. CBI‐GACH also shows similar self‐assembly behavior as its chiral counterpart. X‐ray diffraction studies of both molecules reveals a 2D hexagonal columnar arrangement. The coassembly of CBI‐GCH and CBI‐GACH shows chiral amplification (sergeant and soldiers experiment) with saturation at 30–50 % of the chiral derivative, which was further used to study the dynamics of the assembly. Thus, this study presents a rare report of chiral amplification in an isodesmic system.  相似文献   

15.
In both title compounds, C10H13BO3S, (I), and C13H17BO3, (II), the molecules adopt nearly planar conformations. The crystal packing of (I) consists of a supramolecular two‐dimensional network with a herringbone‐like topology formed by self assembly of centrosymmetric pairs of molecules linked via dipole–dipole interactions. The crystal structure of (II) consists of a supramolecular two‐dimensional network built up from centrosymmetric pairs of molecules viaπ–π interactions. These pairs of molecules are self‐organized in an offset fashion related by a symmetry centre, generating supramolecular ribbons running along the [101] direction. Neighbouring ribbons are stacked via complementary van der Waals and hydrophobic methyl–methyl interactions.  相似文献   

16.
胆甾类分子钳对氨基酸衍生物的对映选择性识别   总被引:8,自引:0,他引:8  
用差紫外光谱滴定法考察了以脱氧胆酸作spacer的手性分子钳1~3对一系列α-氨基酸甲酯的对映选择性识别性能。结果表明,分子钳1和2与客体氨基酸甲酯形成1:1型超分子配合物,并显示较好的手性识别能力。分钳3对所考察的氨基酸甲酯均没有明显的识别作用。讨论了主-客体间尺寸/形状匹配、几何互补等因素对形成超分子配合物的影响,并利用计算机模拟作辅助手段对实验结果和现象进行了解释。  相似文献   

17.
Supramolecular polymers based on dispersion forces typically show lower molecular weights (MW) than those based on hydrogen bonding or metal–ligand coordination. We present the synthesis and self‐assembling properties of a monomer featuring two complementary units, a C60 derivative and an exTTF‐based macrocycle, that interact mainly through π–π, charge‐transfer, and van der Waals interactions. Thanks to the preorganization in the host part, a remarkable log Ka=5.1±0.5 in CHCl3 at room temperature is determined for the host–guest couple. In accordance with the large binding constant, the monomer self‐assembles in the gas phase, in solution, and in the solid state to form linear supramolecular polymers with a very high degree of polymerization. A MW above 150 kDa has been found experimentally in solution, while in the solid state the monomer forms extraordinarily long, straight, and uniform fibers with lengths reaching several microns.  相似文献   

18.
Porphyrins and fullerenes are spontaneously attracted to each other. This new supramolecular recognition element is explored in discrete, soluble, coordinatively linked porphyrin and metalloporphyrin dimers. Jawlike clefts in these bis-porphyrins are effective hosts for fullerene guests. X-ray structures of the Cu complex with C60 and free-base complexes with C70 and a pyrrolidine-derivatized C60 have been obtained. The electron-rich 6:6 ring-juncture bonds of C60 show unusually close approach to the porphyrin or metalloporphyrin plane. Binding constants in toluene solution increase in the order Fe(II) < Pd(II) < Zn(II) < Mn(II) < Co(II) < Cu(II) < 2H and span the range 490-5200 M-1. Unexpectedly, the free-base porphyrin binds C60 more strongly than the metalated porphyrins. This is ascribed to electrostatic forces, enhancing the largely van der Waals forces of the pi-pi interaction. The ordering with metals is ascribed to a subtle interplay of solvation and weak interaction forces. Conflicting opinions on the relative importance of van der Waals forces, charge transfer, electrostatic attraction, and coordinate bonding are addressed. The supramolecular design principles arising from these studies have potential applications in the preparation of photophysical devices, molecular magnets, molecular conductors, and porous metal-organic frameworks.  相似文献   

19.
Stereoregular isotactic and syndiotactic poly(methyl methacrylate)s (it- and st-PMMAs) are known to form a multiple-stranded complementary helix, so-called stereocomplex (SC) through van der Waals interactions, which is a rare example of helical supramolecular structures formed by a commodity polymer. In this study, we prepared SCs by using uniform it- and st-PMMAs and those with a narrow molecular weight distribution having different molecular weights and investigated their structures in detail using high-resolution atomic force microscopy as a function of the molecular weight and molecular weight distribution of the component PMMAs. We found that complementary it- and st-PMMAs with the longer molecular length determine the total length of the SC, and molecules of the shorter component associate until they fill up or cover the longer component. These observations support a supramolecular triple-stranded helical structure of the SCs composed of a double-stranded helix of two intertwined it-PMMA chains included in a single helix of st-PMMA, and this triple-stranded helix model of the SCs appears to be applicable to the it- and st-PMMAs having a wide range of molecular weights we employed in this study. In homogeneous double-stranded helices of it-PMMA, it has been found that, in mixtures of two it-PMMAs with different molecular weights, chains of the same molecular weight selectively form a double-stranded it-PMMA helix, or recognize the molecular weights of each other ("molecular sorting"). We thus demonstrate that molecular weight recognition is possible, without any specific interaction between monomer units, through the formation of a topological multiple-stranded helical structure based upon van der Waals interaction.  相似文献   

20.
Nanoarchitectonics of two-dimensional materials from zero-dimensional fullerenes is mainly introduced in this short review. Fullerenes are simple objects with mono-elemental (carbon) composition and zero-dimensional structure. However, fullerenes and their derivatives can create various types of two-dimensional materials. The exemplified approaches demonstrated fabrications of various two-dimensional materials including size-tunable hexagonal fullerene nanosheet, two-dimensional fullerene nano-mesh, van der Waals two-dimensional fullerene solid, fullerene/ferrocene hybrid hexagonal nanosheet, fullerene/cobalt porphyrin hybrid nanosheet, two-dimensional fullerene array in the supramolecular template, two-dimensional van der Waals supramolecular framework, supramolecular fullerene liquid crystal, frustrated layered self-assembly from two-dimensional nanosheet, and hierarchical zero-to-one-to-two dimensional fullerene assembly for cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号