首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

2.
Ligand Behaviour of P‐functional Organotin Halides: Nickel(II), Palladium(II), and Platinum(II) Complexes with Me2(Cl)SnCH2CH2PPh2 Me2(Cl)SnCH2CH2PPh2 ( 1 ) reacts with NiII, PdII, and PtII halides in molar ratio 2 : 1 forming the complexes [MX2{PPh2CH2CH2Sn(Cl)Me2}2] (M = Ni, Pd, Pt; X = Cl, Br) ( 3 – 6 , 9 , 10 ) ( 7 , 8 : M = Ni; Br instead of Cl). The nickel complexes were isolated and characterized both as the planar ( 3 , 5 , 7 ) and the tetrahedral ( 4 , 6 , 8 ) isomer. Crystal structure analyses and NMR data indicate for the planar nickel complexes 3 , 5 , 7 and [MCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 : M = Pd; 10 : M = Pt) the existence of intra and intermolecular M–Hal…Sn bridges. In a ligand : metal molar ratio of 3 : 1 the complexes [MéCl{PPh2CH2CH2SnCl2Me2}{PPh2CH2CH2Sn(Cl)Me2}2] ( 11 : M = Pd; 12 : M = Pt) are formed which represent intramolecular ion pairs. By dehalogenation of [PdCl2{PPh2CH2CH2Sn(Cl)Me2}2] ( 9 ) with sodium amalgam and graphite potassium (C8K), respectively, the palladacycles cis‐[Pd{PPh2CH2CH2SnMe2}2] ( 13 ) and trans‐[Pd(Cl)PPh2CH2CH2SnMe2{PPh2CH2CH2Sn(Cl)Me2}] ( 14 ) are formed. From the compounds 1 , 3 , 9 , 11 , and 12 the crystal structures are determined. All compounds are characterized by 1H, 31P, and 119Sn NMR spectroscopy.  相似文献   

3.
The syntheses of 2‐(di‐tert‐butylphosphino)‐N,N‐dimethylaniline ( L1 , 71 %) and 2‐(di‐1‐adamantylphosphino)‐N,N‐dimethylaniline ( L2 , 74 %), and their application in Buchwald–Hartwig amination, are reported. In combination with [Pd(allyl)Cl]2 or [Pd(cinnamyl)Cl]2, these structurally simple and air‐stable P,N ligands enable the cross‐coupling of aryl and heteroaryl chlorides, including those bearing as substituents enolizable ketones, ethers, esters, carboxylic acids, phenols, alcohols, olefins, amides, and halogens, to a diverse range of amine and related substrates that includes primary alkyl‐ and arylamines, cyclic and acyclic secondary amines, N? H imines, hydrazones, lithium amide, and ammonia. In many cases, the reactions can be performed at low catalyst loadings (0.5–0.02 mol % Pd) with excellent functional group tolerance and chemoselectivity. Examples of cross‐coupling reactions involving 1,4‐bromochlorobenzene and iodobenzene are also reported. Under similar conditions, inferior catalytic performance was achieved when using Pd(OAc)2, PdCl2, [PdCl2(cod)] (cod=1,5‐cyclooctadiene), [PdCl2(MeCN)2], or [Pd2(dba)3] (dba=dibenzylideneacetone) in combination with L1 or L2 , or by use of [Pd(allyl)Cl]2 or [Pd(cinnamyl)Cl]2 with variants of L1 and L2 bearing less basic or less sterically demanding substituents on phosphorus or lacking an ortho‐dimethylamino fragment. Given current limitations associated with established ligand classes with regard to maintaining high activity across the diverse possible range of C? N coupling applications, L1 and L2 represent unusually versatile ligand systems for the cross‐coupling of aryl chlorides and amines.  相似文献   

4.
The catalytic activity of dimeric [Pd{C6H2(CH2CH2NH2)–(OMe)2,2,3}(μ‐Br)]2 and monomeric [Pd{C6H2(CH2CH2NH2)–(OMe)2,2,3}Br(PPh3)] complexes as efficient, stable and air‐ and moisture‐tolerant catalysts was investigated in the Suzuki, Stille and Hiyama cross‐coupling and homo‐coupling reactions of various aryl halides. Substituted biaryls were produced in excellent yields in short reaction times using catalytic amounts of these complexes. The monomeric complex was demonstrated to be more active than the corresponding dimeric catalyst for the cross‐coupling reaction of unreactive aryl bromides and chlorides. The combination of homogeneous metal catalysts and microwave irradiation gave higher yields of products in shorter reaction times. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Hydrocarbon‐bridged Metal Complexes. XLIX. Coordination Chemistry of Bis(ferrocenyl) substituted 1,3 Diketonates with Ruthenium, Rhodium, Iridium, and Palladium The reactions of the enolates of diferrocenoylmethane and of spacer bridged bis‐, tris‐ and tetrakis(ferrocenoyl)‐1,3‐diketones with chlorobridged compounds [(R3P)PdCl2]2, [(η3‐C3H5)PdCl]2, [(p‐cymene)RuCl2]2, [Cp*MCl2]2 (M = Rh, Ir) give a series of mono‐, bis‐, tris‐ and tetrakis(chelate) complexes 2 – 18 . The structures of (Ph3P)(Cl)Pd[OC(Fe)CHC(Fc)O] ( 3 ) and (Tol3P)(Cl) · Pd[OC(Fc)CHC(O)–C(O)CHC(Fc)O]Pd(Cl)(PTol3) ( 11 ) were determined by X‐ray diffraction. The methine H atom of diferrocenoylmethane and of 3 was substituted by bromine using N‐bromosuccinimide. The electrophilic glycine equivalent α‐bromo‐N‐boc‐glycine ester was added to the methine C‐atom (C3) of diferrocenoylmethane and the product was used as O,O′ chelate ligand.  相似文献   

6.
A method for the synthesis of bicyclo[4.1.0]heptenes from 1,6‐enynes through Pd‐catalyzed cycloisomerization has been developed. N‐ and O‐tethered 1,6‐enynes were successfully transformed to their corresponding 3‐aza‐ and 3‐oxabicyclo[4.1.0]heptenes in reasonable‐to‐high yields using the catalysts [PdCl2(CH3CN)2]/P(OPh)3 or [Pd(maleimidate)2(PPh3)2] in toluene. The computational calculations using density functional theory indicate that [PdCl2{P(OPh)3}] in the oxidation state PdII acts as the active catalyst species for the formation of 3‐azabicyclo[4.1.0]heptenes through 6‐endo‐dig cyclization.  相似文献   

7.
In the title complex, [PdCl2(C12H22S3)]·0.8CH3CN, a potentially tridentate thioether ligand coordinates in a cis‐bidentate manner to yield a square‐planar environment for the PdII cation [mean deviation of the Pd from the Cl2S2 plane = 0.0406 (7) Å]. Each square‐planar entity packs in an inverse face‐to‐face manner, giving pairs with plane‐to‐plane separations of 3.6225 (12) Å off‐set by 1.1263 (19) Å, with a Pd...Pd separation of 3.8551 (8) Å. A partial acetonitrile solvent molecule is present. The occupancy of this molecule was allowed to refine, and converged to 0.794 (10). The synthesis of the previously unreported 3,6,9‐trithiabicyclo[9.3.1]pentadecane ligand is also outlined.  相似文献   

8.
In this work, ortho‐palladated complexes [Pd(µ‐Cl)(C6H4CH2 NRR′‐κ2‐C,N)]2 and [Pd(C6H4CH2NH2‐2‐C,N)Cl(Y)] were tested in the Suzuki–Miyaura cross‐coupling reaction. Cyclopalladated Pd(II) complexes as thermally stable catalysts can activate aryl bromides and chlorides. These complexes were active and efficient catalysts for the Suzuki–Miyaura reaction of aryl bromides and even less reactive aryl chlorides. The cross‐coupled products of a variety of aryl bromides and aryl chloride with phenylboronic acid in methanol as solvent at 60 °C were produced in excellent yields. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The reaction of 1‐naphthylamine with two equivalents of chlorodiphenylphosphine in the presence of triethylamine gave the ligand C10H7‐1‐N(PPh2)2 ( 1 ). Reaction of 1 with PdCl2(CH3CN)2 or PtCl2(cod) (1:1 molar ratio) afforded the complexes cis‐[PdCl2{C10H7‐1‐N(PPh2)2}] ( 2 ) and cis‐[PtCl2{C10H7‐1‐N(PPh2)2}] ( 3 ), respectively. Compounds 1 – 3 were identified and characterized by multinuclear NMR (1H, 13C, 31P NMR) and IR spectroscopy. Crystal structure determinations of complexes 2 and 3 were carried out.  相似文献   

10.
Isomerically pure nitrile complexes cis‐[Ru(dppm)2Cl(NCR)]+ ( 2 a – d ) are formed upon chloride displacement from cis‐[Ru(dppm)2Cl2] ( 1 ) or, alternatively, by ligand substitution from the acetonitrile complex 2 a . This latter approach does also allow for the introduction of pyridine ( 3 a , b ), heptamethyldisilazane ( 4 ) or isonitrile ligands ( 5 ). All complexes are obtained as the configurationally stable cis‐isomers. Only cis‐[Ru(dppm)2Cl(CNtBu)]+ slowly isomerizes to the trans from. The solid state structures of the CH3CN, C2H5CN and the trans‐tBuNC complexes were established by X‐ray crystallography. Electrochemical investigations of the nitrile complexes 2 a – d show in addition to a chemically reversible one‐electron oxidation an irrversible reduction step. In CH2Cl2 solution, cis‐ and trans‐[Ru(dppm)2Cl2] have been identified as the final products of the electrochemically induced reaction sequence.  相似文献   

11.
A β‐diketimine ligand with vinylidene substitution at γ‐carbon, CH2C(CH3CNAr)2 (Ar = 2,6‐diisopropylphenyl) ( L 2 ), was synthesized by treating β‐diketimine H2C(CH3CNAr)2 with n ‐BuLi followed by paraformaldehyde. L 2 formed the homobimetallic ether‐bridged β‐diketiminate complex [O{(CH2‐β‐diketiminate)Pd(OAc)}2] ( 1 ) with (PdOAc)2. It also gave complexes [L2PdCl2] ( 2 ) and [L2NiBr2] ( 3 ) when treated with PdCl2(CH3CN)2 and NiBr2(dimethoxyethane), respectively. All the compounds were characterized using 1H/13C NMR spectroscopy and single‐crystal X‐ray diffraction studies. The catalytic activity of Pd and Ni complexes 1 , 2 and 3 was explored in Heck coupling and alkyne trimerization reactions and it was found that they are very good catalysts. The results are reported in detail.  相似文献   

12.
The reactions of palladium(II) chloride, PPh3 and heterocyclic-N/NS ligand in a mixture of CH3CN (5 ml) and CH3OH (5 ml) produced [PdCl2(PPh3)(L1)]·(CH3CN) (1) (L1 = ADMT = 3-amino-5,6-dimethyl-1,2,4-triazine), [PdCl2(PPh3)(L2)] (2) (L2 = 3-CNpy = 3-cyanopyridine), [PdCl(PPh3)(L3)]2·(CH3CN) (3), [PdCl(PPh3)2(HL3)]Cl (4) (HL3 = Hmbt = 2-mercaptobenzothiazole). The coordination geometry around the Pd atoms in these complexes is a distorted square plane. In 3, L3 acts as a bidentate ligand, bridging two metal centers, while in 4, HL3 appears as monodentate ligand with one nitrogen donor atom uncoordinated. Complexes 1-4 are characterized by IR, luminescence, NMR and single crystal X-ray diffraction analysis. All complexes exhibit luminescence in solid state at room temperature.  相似文献   

13.
In the title compound, [PdCl2(C20H26O2S2)], the Pd atom has a distorted square‐planar coordination geometry, with Pd—S distances of 2.3121 (18) and 2.3102 (18) Å, Pd—Cl distances of 2.291 (2) and 2.314 (2) Å, and S—Pd—Cl angles of 94.98 (7) and 86.25 (7)°. Upon complexation, an 11‐membered ring is formed by the S—Pd—S linkage in the ligand chain.  相似文献   

14.
Aminomethylphosphine (P–C–N) type ligands, (Ph2PCH2)2NR R = –(CH2)3Si(OEt3)3 or –CH2CH2OH, and their Pd(II) complexes have been synthesized. All the compounds were characterized by 1H-, 31P-NMR, and elemental analysis. The complexes are proposed to have a square planar geometry. They were investigated as catalysts for the Heck reaction of aryl halides (I, Br, Cl) with methyl acrylate. Both complexes showed high activity to give methyl cinnamate in good yields, with the best turnover numbers found for [PdCl2(Ph2PCH2)2N(CH2)3Si(OEt)3].  相似文献   

15.
A novel catalytic system of PdCl2(CH3CN)2 with N,N′-dicyclohexyl-1,4-diazabutadiene (DAB-Cy) ligand was successfully used in reductive coupling of aryl halides.  相似文献   

16.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

17.
The reactions of 3,10‐C‐meso‐3,5,7,7,10,12,14,14‐octamethyl‐1,4,8,11‐tetraazacyclotetradecadiene, L1, and two isomers (LB and LC, differing in the orientation of methyl groups on the chiral carbon atoms) of its reduced form with PdCl2 and K2[Pd(SCN)4], produce square‐planar tetrachloro‐ and tetrathiocyano‐palladium(II) complexes of general formulae [PdL′][PdCl4] and [PdL′][Pd(SCN)4] (L′ = L1, LB and LC), respectively. By contrast, the third ane isomer, LA, upon reaction with the same reagents, PdCl2 and K2[Pd(SCN)4], formed octahedral tetrachloro‐ and tetrathiocyanato‐palladium(IV) complexes [PdLACl2]Cl2 and [PdLA(SCN)2](SCN)2, respectively. The [PdL′][PdCl4] and [PdLACl2]Cl2 complexes undergo substitution reactions with KSCN to form square‐planar and octahedral tetrathiocyanato complexes [PdL′][Pd(SCN)4] and [PdLA(SCN)2](SCN)2, respectively. All complexes have been characterized on the basis of analytical, spectroscopic, conductometric and magnetochemical data. The anti‐fungal and anti‐bacterial activities of these complexes have been studied against some phytopathogenic fungi and bacteria. The crystal structure of [PdL1][Pd(SCN)4] has been confirmed by X‐ray crystallography and shows with square‐planar PdN4 and PdS4 geometries [monoclinic, space group C2/c, a = 17.884(3) Å, b = 14.734(2) Å, c = 11.4313(18) Å, β = 104.054(5)° ]. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A novel PdCl2/bis(2‐pyridylmethyl)amine‐based ligand ( 1 ) catalytic system, which is water‐soluble and air‐stable, has been successfully synthesized and applied for Suzuki‐Miyaura cross‐coupling reaction. In the presence of catalytic amount of PdCl2/ 1 system, arylboronic acids can couple with a wide range of aryl halides, including aryl bromides and aryl chlorides. The reactions proceed under mild conditions to give excellent yields, and a wide range of functionalities is tolerated.  相似文献   

19.
Imidazolium salts, [RS(O)? CH2(C3H3N2)Mes]Cl (R=Me ( L1 a ), Ph ( L1 b )); Mes=mesityl), make convenient carbene precursors. Palladation of L1 a affords the monodentate dinuclear complex, [(PdCl2{MeS(O)CH2(C3H2N2)Mes})2] ( 2 a ), which is converted into trans‐[PdCl2(NHC)2] (trans‐ 4 a ; N‐heterocyclic carbene) with two rotamers in anti and syn configurations. Complex trans‐ 4 a can isomerize into cis‐ 4 a (anti) at reflux in acetonitrile. Abstraction of chlorides from 4 a or 4 b leads to the formation of a new dication: trans‐[Pd{RS(O)CH2(C3H2N2)Mes}2](PF6)2 (R=Me ( 5 a ), Ph ( 5 b )). The X‐ray structure of 5 a provides evidence that the two bidentate SO? NHC ligands at palladium(II) are in square‐planar geometry. Two sulfoxides are sulfur‐ and oxygen‐bound, and constitute five‐ and six‐membered chelate rings with the metal center, respectively. In acetonitrile, complexes 5 a or 5 b spontaneously transform into cis‐[Pd(NHC)2(NCMe)2](PF6)2. Similar studies of thioether–NHCs have also been examined for comparison. The results indicate that sulfoxides are more labile than thioethers.  相似文献   

20.
氯化钯在氟化四丁基铵中当场生成纳米钯,该钯催化剂在Suzuki-Miyaura交叉偶联反应中显示很高的催化效率。在氯化钯和氟化四丁基铵存在下,许多芳基卤代烃可以顺利与芳基硼酸发生偶联反应,得到中等到高的产率。此外,在Suzuki-Miyaura偶联反应中该氯化钯/氟化四丁基铵催化体系可以回收重复使用多次,并且芳基溴代烃可以在15-60分钟内反应完全。值得指出的是,该反应是在无溶剂、无配体和催化体系可回收重复使用的条件下进行的。这和无配体条件下TBAB中钯催化卤代芳烃与芳基硼酸的Suzuki-Miyaura交叉偶联反应方法。该氯化钯/氟化四丁基铵催化反应的反应机理也进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号