首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conveniently coated silicotungstic acid (STA, H4[W12SiO40]) on amino‐functionalized Si–magnetite nanoparticles, as surface functionalization of magnetic nanoparticles is an excellent way for green and efficient catalysis. The nanoparticles were structurally characterized using various techniques. The catalytic activity and recyclability of the STA–amine–Si–magnetite nanoparticles were probed through synthesis of 1H–pyrazolo[1,2‐b]phthalazinedione derivatives. The reaction proceeds smoothly to provide products in excellent yields and short reaction times. The catalyst could be readily recovered using a simple external magnet and reused several times without any significant loss in activity. Herein, we report a comparison of the activity of H4[W12SiO40] as a homogeneous and heterogeneous catalyst, the latter being found to be more efficient. The findings offer effective methods for environmentally friendly synthesis of pyrazolo[1,2‐b]phthalazinedione derivatives.  相似文献   

2.
In this study, dendrimer‐encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3O4@SiO2 nanoparticles were prepared via a multistep‐synthesis. Then, the synthesized composite was fully characterized by various techniques such as fourier transform infrared (FT‐IR) spectroscopy, X‐ray diffraction (XRD), dynamic light scattering (DLS), UV‐vis spectroscopy, energy dispersive X‐ray analysis (EDX), thermogravimetric analysis (TGA) and vibration sample magnetometer (VSM). From the information gained by FE‐SEM and TEM studies it can be inferred that the particles are mostly spherical in shape and have an average size of 50 nm. Also, the amount of Cu is determined to be 0.51 mmol/g in the catalyst by inductively coupled plasma (ICP) analyzer. This magnetic nano‐compound has been successfully applied as a highly efficient, magnetically recoverable and stable catalyst for N‐arylation of nitrogen heterocycles with aryl halides (I, Br) and arylboronic acids without using external ligands or additives. The catalyst was also employed in a one‐pot, three‐component reaction for the efficient and green synthesis of 5‐substituted 1H‐tetrazoles using various aldehydes, hydroxylamine hydrochloride and sodium azide in water. The magnetic catalyst can be easily separated by an external magnet bar and is recycled seven times without significant loss of its activity.  相似文献   

3.
The goal of this study is to prepare novel hybrid nanoparticles, in the form of micellar nanoparticles in aqueous media, which will combine the properties of the amphiphilic diblock copolymers (such as PEO‐b‐PPhOx and PI‐b‐PEO) with the ones of the nickel 1,2‐dithiolene (1,2‐Ni DT) complexes. The structural and morphological analysis of these nanoparticles have revealed that they can be promising for photodynamic therapy and near‐infrared (NIR) optical imaging due to their size and absorption in NIR. The micellar nanoparticles have been studied not only in aqueous solutions but also under other physiological conditions, that is, PBS and PBS‐FBS buffer solutions. Their solutions are characterized by several methods, including UV–vis spectroscopy, light scattering, and FTIR. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2507–2513  相似文献   

4.
Novel guanidinium ionic liquid‐grafted rigid poly(p‐phenylene) (PPPIL) microspheres have been developed for metal scavenging and catalysis. The noble‐metal nanoparticles supported on the microspheres surface can be used as efficient heterogeneous catalysts. The combination of nanoparticles and ionic liquid fragments on the microsphere surfaces enhance the activity and durability of the catalyst. The PPPIL ? Pd0 catalyst has been tested in the Suzuki cross‐coupling reaction, and exhibits much higher catalytic activity than Pd catalysts supported on porous polymer matrices. The PPPIL ? Pd0 catalyst can be recycled at least for nine runs without any significant loss of activity. The present approach may, therefore, have potential applications in transition‐metal‐nanocatalyzed reactions.  相似文献   

5.
A sulfonated magnetic cellulose‐based nanocomposite was applied as an efficient, inexpensive and green catalyst for the one‐pot three‐component synthesis of 7‐aryl‐8H ‐benzo[h ]indeno[1,2‐b ]quinoline‐8‐ones starting from 1,3‐indanedione, aromatic aldehydes and 1‐naphthylamine under solvent‐free conditions in high yields (79–98%) within short reaction times (2–5 min). The nanobiostructure catalyst can be easily separated from the reaction mixture by using an external magnet and reused several times.  相似文献   

6.
An elementary and ecological method has been designed for the biosynthesis of palladium nanoparticles, through the utilization of aqueous extract of red tea (Hibiscus sabdariffa L.) as a reducing and stabilizing agent. The nanoparticles obtained were characterized through UV–visible spectroscopy, transmission election microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning election microscopy, energy‐dispersive X‐ray analysis and inductively coupled plasma analysis. The nanoparticles with spherical shape and dimensions of approximately 10 nm were used as a heterogeneous catalyst for Suzuki coupling reactions under mild conditions. The high efficiency of the catalytic reaction was affirmed by the good yields of products, easy work‐up, absence of palladium leached from the support and smooth recovery of catalyst.  相似文献   

7.
A dual‐templating method was used to synthesize a series of hierarchical carbon supports containing different proportions of spherical macropores (ca. 200 nm in diameter) and mesoporous channels (ca. 4 nm in diameter). These and some other conventional carbon materials were subsequently impregnated with Ni and tested for the conversion of glycerol. The hierarchical catalysts exhibited a significantly higher conversion (96%) and selectivity (77%) to 1,2‐propanediol, and the specificity selectivity coefficient (6.1) towards 1,2‐propanediol against lactic acid was three times higher than that observed over a conventional Ni/Cmicro catalyst (2.1). The enhanced performance of these materials, compared with the Ni nanoparticles supported on conventional carbon supports, was attributed to their high surface areas (> 1110 m2?g?1) and large pore volumes (ca. 0.4 cm3?g?1) permitting greater accessibility of substrate and/or intermediates to Ni active sites. Given that the concentration of accessible Ni sites in these materials is higher, a competitive benzilic‐acid‐rearrangement reaction to produce lactic acid was suppressed, leading to an enhanced hydrogenation selectivity to 1,2‐propanediol. This study evidences the potential benefits, which can be established from utilizing hierarchical support materials in the valorization of biomass.  相似文献   

8.
2‐Amino‐4‐(4‐substitutedphenyl)‐5‐oxo‐4H,5H‐pyrano[2,3‐d]pyrido[1,2‐a]pyrimidine‐3‐carbonitrile‐derivatives 2–12 were synthesized via multi‐component condensation reactions of different aromatic aldehydes, 3H‐pyrido[1,2‐a]pyrimidine‐2,4‐dione 1 , and malononitrile by using ZnO nanoparticles as green chemistry, environmentally friendly catalyst under solvent‐free conditions. The present work creates a variety of biologically active heterocyclic compounds in excellent yield and a short time. The structures of all synthesized compounds were elucidated with the elemental analyses, IR, 1H NMR, and mass spectral data.  相似文献   

9.
We report on a detailed NMR spectroscopic study of the catalyst‐substrate interaction of a highly enantioselective oligopeptide catalyst that is used for the kinetic resolution of trans‐cycloalkane‐1,2‐diols via monoacylation. The extraordinary selectivity has been rationalized by molecular dynamics as well as density functional theory (DFT) computations. Herein we describe the conformational analysis of the organocatalyst studied by a combination of nuclear Overhauser effect (NOE) and residual dipolar coupling (RDC)‐based methods that resulted in an ensemble of four final conformers. To corroborate the proposed mechanism, we also investigated the catalyst in mixtures with both trans‐cyclohexane‐1,2‐diol enantiomers separately, using advanced NMR methods such as T1 relaxation time and diffusion‐ordered spectroscopy (DOSY) measurements to probe molecular aggregation. We determined intramolecular distance changes within the catalyst after diol addition from quantitative NOE data. Finally, we developed a pure shift EASY ROESY experiment using PSYCHE homodecoupling to directly observe intermolecular NOE contacts between the trans‐1,2‐diol and the cyclohexyl moiety of the catalyst hidden by spectral overlap in conventional spectra. All experimental NMR data support the results proposed by earlier computations including the proposed key role of dispersion interaction.  相似文献   

10.
A new catalytic synthetic route to functionalized 1,2‐azaborinines has been developed by the [2+2]/[2+4] cycloaddition reactions of di‐tert‐butyliminoboranes and alkynes in presence of a rhodium catalyst. The first examples of ferrocene‐functionalized azaborinines have been synthesized using this strategy. Moreover, the regioselectivity of this reaction can be controlled by the formation of an intermediate rhodium 1,2‐azaborete complex, which results in the isolation of the first azaborinine boronic ester. The isolation of an NH‐containing BN isostere by elimination of isobutene from an N(tBu) group under thermolytic conditions has also been achieved. Theoretical studies give further insight into the formation of 1,2‐azaborinines and the elimination of isobutene from the N(tBu) group.  相似文献   

11.
Phenylene‐coated organorhodium‐functionalized magnetic nanoparticles are developed through co‐condensation of chiral 4‐(trimethoxysilyl)ethyl)phenylsulfonyl‐1,2‐diphenylethylene‐diamine and 1,4‐bis(triethyoxysilyl)benzene onto Fe3O4 followed complexation with [{Cp*RhCl2}2]. This magnetic catalyst exhibits excellent catalytic activity and high enantioselectivity in asymmetric transfer hydrogenation in aqueous medium. Such activity is attributed to the high hydrophobicity and the confined nature of the chiral organorhodium catalyst. The magnetic catalyst can be easily recovered by using a small external magnet and it can be reused for at least 10 times without loss of its catalytic activity. This characteristic makes it an attractive catalyst for environmentally friendly organic syntheses.  相似文献   

12.
In this work, different nitroaromatic compounds were successfully reduced to their corresponding aromatic amines with excellent conversion and selectivity in methanol at 50 °C by using Pd‐Pt nanoparticles immobilized on the modified grapheme oxide (m‐GO) and hydrogen as the reducing source. The catalytic efficiency of Pd and Pd‐Pt loading on the modified GO was investigated for the reduction of various nitroaromatic compounds, and the Pd‐Pt/m‐GO system demonstrated the highest conversion and selectivity. The catalyst was characterized by different techniques including FT‐IR, Raman, UV–Vis, XRD, BET, XPS, FESEM, EDS, and TEM. The metal nanoparticles with the size of less than 10 nm were uniformly distributed on the m‐GO. The catalyst could be reused at least five times without losing activity, showing the stability of the catalyst structure. Finally, the efficiency of the prepared catalyst was compared with Pd‐Pt/AC, and Pd‐Pt/GO catalysts.  相似文献   

13.
Superparamagnetic nanoparticles of modified thioglycolic acid (γ‐Fe2O3@SiO2‐SCH2CO2H) represent a new, efficient and green catalyst for the one‐pot synthesis of novel spiro[benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazine] derivatives via domino Knoevenagel–Michael–cyclization reaction of 2‐hydroxynaphthalene‐1,4‐dione, benzene‐1,2‐diamines, ninhydrin and isatin. This novel magnetic organocatalyst was easily isolated from the reaction mixture by magnetic decantation using an external magnet and reused at least six times without significant loss in its activity. The catalyst was fully characterized using various techniques. This procedure was also applied successfully for the synthesis of benzo[a ]benzo[6,7]chromeno[2,3‐c ]phenazines.  相似文献   

14.
A simple and eco‐friendly procedure has been devised for the green synthesis of palladium nanoparticles, using the aqueous extract of herbal tea (Stachys lavandulifolia), a renewable and nontoxic natural phyto‐exudate. The water‐soluble components of the extract act as reducing agent and stabilizer. This green route does not require a surfactant or capping agent for the growth of palladium nanoparticles. The generated nanoparticles were analysed using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray analysis and inductively coupled plasma. The palladium nanoparticles having spherical shape and dimensions of between 5 and 7 nm were employed as a homogeneous catalyst for Suzuki coupling reactions conducted in water under mild conditions. Good yields of products, a facile work‐up, no evidence of leached palladium from the catalyst surface and smooth recovery of the catalysis by adding ethyl acetate, which could be reused at least eight times, confirm the very good efficiency of the catalytic reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Phosphomolybdic acid (PMA)–SiO2 was found to be an efficient catalyst for the three‐component condensation reaction of phthalhydrazide, 1,3‐diketone, and aldehydes to produce 2H‐indazolo[1,2‐b]phthalazine‐triones in excellent yields. The catalyst can be recovered and reused without significant loss of activity.  相似文献   

16.
Palladium nanoparticles immobilized on the magnetic nanoparticles@2‐amino‐N‐(2‐aminoethyl) benzamide (MNPs@A‐N‐AEB.Pd0) have been presented as an efficient, and reusable magnetically heterogeneous catalyst for the C‐O coupling reaction, namely Ullmann condensation reactions in an aqueous medium. This heterogeneous catalyst shows superior reactivity for the C‐O arylation of different aryl halide (chloride, bromide, and iodide) with phenol derivatives to afford the desired products in good to excellent yields within short reaction time. Moreover, the catalyst can be easily recovered and reused for seven runs without loss of catalytic activity. The catalyst was characterized by several techniques, such as FT‐IR, SEM, TEM, EDS, XRD, TGA and ICP‐OES.  相似文献   

17.
聂春发  索继栓 《中国化学》2005,23(3):315-320
Chiral Ru-BsDPEN, (1R,2R)-N-p-benzenesulfonyl-1,2-diphenylethylenediamine, catalyst has been immobilized on a mesoporous molecular sieve of MCM-41 type successfully. A hybrid mesoporous molecular sieve was synthesized using a precursor bearing benzene group, which in organosilica were sulfonylated and reacted with (1R,2R)-l,2-diphenylethylenediamine and [RuC1E(p-cymene)]2 successively to afford immobilized catalyst. The Brunauer-Emmett-Teller (BET) surface area and Barrett-Joyner-Halenda (BJH) pore size decreased after immobilization of catalyst onto the mesoporous material. Enantioselective transfer hydrogenation of ketones catalyzed by immobilized catalyst showed the highest yield of 22.36% and e.e. value of 31.47% by using acetophenone as substrate when reaction time was 48 and 16 h respectively.  相似文献   

18.
Sulfamic acid immobilized on amino‐functionalized magnetic nanoparticles (MNPs/DETA‐SA) was successfully fabricated and characterized using various techniques. Diameters of approximately 15 nm for the MNPs/DETA‐SA were observed from scanning electron microscopy images. The as‐fabricated nanocomposite was applied as an efficient and magnetically reusable catalyst for the synthesis of 2,3‐dihydroquinazoline‐4(1H)‐one and polyhydroquinoline derivatives. All products were obtained in good to excellent yields. Recovery tests confirm that the catalyst can be readily recovered using an external magnet and reused many times without significant loss of its catalytic activity.  相似文献   

19.
An efficient methodology has been developed for the synthesis of quinoxalin‐2(1H)‐one derivatives of 2‐phenylimidazo[1,2‐a]pyridines by microwave‐irradiated Hinsberg heterocyclization between 2‐phenylimidazo[1,2‐a]pyridine‐3‐glyoxalates and o‐phenylenediamine using either montmorillonite K‐10 or Yb(OTf)3 as catalysts. Montmorillonite K‐10 was proven to be an efficient catalyst for the heterocyclization reaction between sterically hindered glyoxalate and o‐phenylenediamine only under microwave conditions. The use of Yb(OTf)3/tetrahydrofuran was also found to be an effective catalyst for the above chemical transformation among a series of Lewis acids screened under microwave conditions; however, comparatively lesser yields were obtained as compared with the use of montmorillonite K‐10.  相似文献   

20.
A well‐defined triazole functionalized porous triazine based polymers act as solid heterogeneous catalyst after incorporating palladium oxide nanoparticles (PdO@TTAS) have been synthesized and thoroughly characterized by various techniques such as, FT‐IR, UV‐DRS, solid state 13C CP‐MAS, XPS, powder X‐ray diffraction, TGA, SEM and TEM analysis has been detailed illustrated. It is important to note that synthesized catalytic performance for carbonylation of aryl halides (X = I, Br) with EDC.HCl (N‐(3‐dimethylaminopropyl)‐N′‐ethylcarbodiimide hydrochloride), and formic acid was found to be an effective CO source in the presence of triethylamine as a base and DMF as a solvent medium at 80 °C for about 3 hr. The PdO@TTAS catalyst exhibits superior catalytic performance and along with good yield (up to 90%). Moreover, studying the heterogeneity and reusability of the environmentally friendly solid catalyst can be easily separated by simple filtration and then recycled for several times. In this reaction method, we avoided ligand, additive, promoters and CO gas, due to additional problem arise by using gaseous CO, highly toxic greenhouse gases and high pressurized reaction setup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号