首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A general and efficient method for the highly enantioselective alkynylation of ketoimines through a zinc/1,1′‐bi‐2‐naphthol (BINOL)‐catalyzed process has been developed. A variety of ketoimines, including α‐fluoroalkyl α‐imine esters, α‐aryl α‐imine esters, and trifluoromethyl aryl ketoimines, are applicable and provide their corresponding quaternary propargyl amines in excellent yields with high ee values (up to 99 % ee). Both the steric and electronic effects of substituents at the 3,3′ positions of BINOL are critical for the reaction efficiency and enantioselectivity. To demonstrate the usefulness of the method, (R)‐α‐CF3 α‐proline has been prepared in a highly efficient manner. The notable features of this protocol are its broad substrate scope, high reaction efficiency (up to 99 %) and enantioselectivity (up to 99 % ee), low catalyst loading (5 mol % of BINOL derivative), and mild reaction conditions.  相似文献   

2.
An ortho‐selective rhodium‐catalyzed direct C?H arylation of 1,1′‐bi‐2‐naphthol (BINOL), to deliver the widely used but not easily available 3,3′‐diaryl BINOL, has been developed. This highly efficient one‐step synthetic approach is the shortest route to date and is greatly facilitated by the newly developed ligand system comprising tBu2PCl, Ph2‐cod, and Cy3P?HBF4. In addition, the same procedure can facilitate the challenging syntheses of 3‐bulkyaryl BINOLs in good to excellent yields.  相似文献   

3.
The activity of chiral titanium catalysts derived from H8‐BINOL ligands in the enantioselective arylation of an aldehyde with PhTi(OiPr)3 is significantly enhanced by an increase of the size of the substituent at the 3‐position. High enantioselectivity (> 90 % ee) can be obtained even at a substrate/catalyst ratio (S/C) of 800 for DTBP‐H8‐BINOL (DTBP=3,5‐di‐tert‐butylphenyl) and DAP‐H8‐BINOL (DAP=3,5‐di(9‐anthraceny)phenyl). These titanium catalysts are successfully applied to the enantioselective arylation and heteroarylation of aldehydes at a S/C ratio of 400 by using organotitanium reagents generated in situ from bromide precursors. The remarkable weakening of the intramolecular aggregation of the two ?Ti(OiPr)3 units in a DPP‐H8‐BINOL (DPP=3,5‐diphenylpheny)‐derived bis‐titanium complex is revealed by X‐ray and variable‐temperature (VT)‐NMR studies. Based on these observations, a catalytic cycle, involving the rate‐limiting aryl group transfer followed by aldehyde complexation and enantioselective arylation, is proposed to account for the high activity of the 3‐substituted H8‐BINOL catalyst system.  相似文献   

4.
Electrospray ionization of methanolic solutions of nickel(II) nitrate, 1,1′‐binaphthalene‐2,2′‐diol (BINOL), and secondary alcohols (ROH) inter alia affords monocationic complexes of the type [(BINOLate)Ni(ROH)]+, where BINOLate stands for singly deprotonated BINOL. Upon collision‐induced dissociation (CID), the mass‐selected ions undergo competing fragmentations involving loss of the alcohol ligand and expulsion of the corresponding carbonyl compound. The latter reaction leads to the hydride complex [(BINOL)Ni(H)]+ and can thus be regarded as the reversal of the reduction of ketones with metal hydrides. The possibility of the occurrence of enantioselective gas‐phase reactions is probed for combinations of chiral BINOLate ligands with chiral alkan‐2‐ols. Whereas aliphatic alkan‐2‐ols do not show pronounced chiral effects, enantioselective bond activation is observed for 1‐phenylethanol, indicating an interaction of the aromatic ring of the alkanol with the positively charged metal center.  相似文献   

5.
A highly enantioselective ring‐opening alkylation reaction between 3‐aryl‐oxindole and N‐(2‐picolinoyl) aziridine has been realized for the first time. The reaction is efficiently mediated by a simple in‐situ‐generated magnesium catalyst and 3,3′‐fluorinated‐BINOL (BINOL=1,1′‐binaphthalene‐2,2′‐diol) has been identified as a powerful chiral ligand. Notably, the fluorine atom on the chiral ligand plays a key role in providing the desired chiral 3‐alkyl‐3‐aryl oxindoles with excellent enantioselectivities.  相似文献   

6.
The H8BINOL‐based perfluoroalkyl ketone (S)‐ 2 is found to exhibit highly enantioselective fluorescent enhancements toward both unfunctionalized and functionalized chiral amines. It greatly expands the substrate scope of the corresponding BINOL‐based sensor. A dramatic solvent effect was observed for the reaction of the amines with compound (S)‐ 2 . In DMF, cleavage of the perfluoroalkyl group of compound (S)‐ 2 to form amides was observed but not in other solvents, such as methylene chloride, chloroform, THF, hexane, and perfluorohexane. Thus, the addition of another solvent, such as THF, can effectively quench the reaction of compound (S)‐ 2 with amines in DMF to allow stable fluorescent measurement. This is the first example that the formation of strong amide bonds under very mild conditions is used for the enantioselective recognition of chiral amines. The mechanism of the reaction of compound (S)‐ 2 with chiral amines is investigated by using various analytical methods including mass spectrometry as well as NMR and UV/Vis absorption spectroscopy.  相似文献   

7.
A Pd(II)‐catalyzed enantioselective intramolecular amidation of both benzylic and unbiased methylene C(sp3)?H bonds for the straightforward synthesis of chiral β‐lactams from aliphatic carboxamides is reported. The combination of 2‐pyridinylisopropyl (PIP) auxiliary with 3,3’‐substituted BINOL ligands is crucial for the enhancement of both reactivity and enantiocontrol of differentiating unbiased methylene C(sp3)?H bonds. The desired chemoselective C—N reductive elimination was achieved by employing 2‐fluoro‐1‐iodo‐4‐nitrobenzene as oxidant.  相似文献   

8.
A practical general method for asymmetric intermolecular benzylic C(sp3)?H amination has been developed by combining the pentafluorobenzyl sulfamate PfbsNH2 with the chiral rhodium(II) catalyst Rh2(S‐tfptad)4. Various substrates can be used as limiting components and converted to benzylic amines with excellent yields and high levels of enantioselectivity. Additional key features for the reaction are the low catalyst loading and the ability to remove the Pfbs group under mild conditions to give NH‐free benzylic amines.  相似文献   

9.
An enantioselective synthesis of α‐aminoketone derivatives were readily available through a tandem insertion–[1,3] O‐to‐C rearrangement reaction. The rhodium salt and chiral N,N′‐dioxide‐indium(III) complex make up relay catalysis, which enables the O?H insertion of benzylic alcohols to N‐sulfonyl‐1,2,3‐triazoles, and asymmetric [1,3]‐rearrangement of amino enol ether intermediates, subsequently. Preliminary mechanistic studies suggested that the [1,3] O‐to‐C rearrangement step proceeded through an ion pair pathway.  相似文献   

10.
The reaction of the N‐thiophosphorylated thiourea (HOCH2)(Me)2CNHC(S)NHP(S)(OiPr)2 (HL), deprotonated by the thiophosphorylamide group, with NiCl2 leads to green needles of the pseudotetrahedral complex [Ni(L‐1,5‐S,S′)2] ? 0.5 (n‐C6H14) or pale green blocks of the trans square‐planar complex trans‐[Ni(L‐1,5‐S,S′)2]. The former complex is stabilized by homopolar dihydrogen C?H???H?C interactions formed by n‐hexane solvent molecules with the [Ni(L‐1,5‐S,S′)2] unit. Furthermore, the dispersion‐dominated C?H??? H?C interactions are, together with other noncovalent interactions (C?H???N, C?H???Ni, C?H???S), responsible for pseudotetrahedral coordination around the NiII center in [Ni(L ‐1,5‐S,S′)2] ? 0.5 (n‐C6H14).  相似文献   

11.
The commonly used para‐nitrobenzenesulfonyl (nosyl) protecting group is employed to direct the C? H activation of amines for the first time. An enantioselective ortho‐C? H cross‐coupling between nosyl‐protected diarylmethylamines and arylboronic acid pinacol esters has been achieved utilizing chiral mono‐N‐protected amino acid (MPAA) ligands as a promoter.  相似文献   

12.
Radical‐involved enantioselective oxidative C?H bond functionalization by a hydrogen‐atom transfer (HAT) process has emerged as a promising method for accessing functionally diverse enantioenriched products, while asymmetric C(sp3)?H bond amination remains a formidable challenge. To address this problem, described herein is a dual CuI/chiral phosphoric acid (CPA) catalytic system for radical‐involved enantioselective intramolecular C(sp3)?H amination of not only allylic positions but also benzylic positions with broad substrate scope. The use of 4‐methoxy‐NHPI (NHPI=N‐hydroxyphthalimide) as a stable and chemoselective HAT mediator precursor is crucial for the fulfillment of this transformation. Preliminary mechanistic studies indicate that a crucial allylic or benzylic radical intermediate resulting from a HAT process is involved.  相似文献   

13.
Chiral benzylic amines are privileged motifs in pharmacologically active molecules. Intramolecular enantioselective radical C(sp3)−H functionalization by hydrogen-atom transfer has emerged as a straightforward, powerful tool for the synthesis of chiral amines, but methods for intermolecular enantioselective C(sp3)−H amination remain elusive. Herein, we report a cationic copper catalytic system for intermolecular enantioselective benzylic C(sp3)−H amination with peroxide as an oxidant. This mild, straightforward method can be used to transform an array of feedstock alkylarenes and amides into chiral amines with high enantioselectivities, and it has good functional group tolerance and broad substrate scope. More importantly, it can be used to synthesize bioactive molecules, including chiral drugs. Preliminary mechanistic studies indicate that the amination reaction involves benzylic radicals generated by hydrogen-atom transfer.  相似文献   

14.
Reported herein is an iridium‐catalyzed, regioselective silylation of the aromatic C? H bonds of benzylamines and the benzylic C? H bonds of 2,N‐dialkylanilines. In this process, (hydrido)silyl amines, generated in situ by dehydrogenative coupling of benzylamine or aniline with diethylsilane, undergo selective silylation at the C? H bond γ to the amino group. The products of this silylation are suitable for subsequent oxidation, halogenation, and cross‐coupling reactions to deliver benzylamine and arylamine derivatives.  相似文献   

15.
3(2H)‐Furanones are efficiently generated from 3‐alkynyl oxireno[2,3‐b]chromenones by an Au/DDQ‐catalyzed domino reaction through a pathway composed of cyclization, C? C cleavage, nucleophilic addition, oxidation, and nucleophilic addition. It was found that stoichiometric AuCl3 or catalytic Au with stoichiometric DDQ can oxidize the benzylic sp3 C? H bond to facilitate nucleophilic addition.  相似文献   

16.
N‐Dealkylation methods are well described for organic chemistry and the reaction is known in nature and drug metabolism; however, to our knowledge, enantioselective N‐dealkylation has not been yet reported. In this study, exclusively the (S)‐enantiomers of racemic N‐ethyl tertiary amines (1‐benzyl‐N‐ethyl‐1,2,3,4‐tetrahydroisoquinolines) were dealkylated to give the corresponding secondary (S)‐amines in an enantioselective fashion at the expense of molecular oxygen. The reaction is catalyzed by the berberine bridge enzyme, which is known for C? C bond formation. The dealkylation was demonstrated on a 100 mg scale and gave optically pure dealkylated products (ee>99 %).  相似文献   

17.
Introduction Optically active 1,1'-bi-2-naphthol (BINOL) and its derivatives have been widely used as chiral ligands of catalysts for asymmetric reactions and effective host compounds for the isolation or optical resolution of a wide range of organic guest molecules through the for-mation of crystalline inclusion complexes.1,2 The wide-ranging and important applications of these com-pounds in organic synthesis have stimulated great inter-est in developing efficient methods for their prepara-…  相似文献   

18.
In the title compound, C22H24N4O11, the N‐glycosidic torsion angles O′—C′—N—C and O′—C′—N—N are ?34.1 (6) and 148.8 (3)°, respectively. The mol­ecule displays an α‐d configuration with the ribo­furan­ose moiety in an O′‐exo–C′‐endo pucker. There are only weak C—H?O and C—H?N intra‐ and intermolecular interactions.  相似文献   

19.
With 3,3′‐bis(2‐oxazolyl)‐1,1′‐bi‐2‐naphthols (BINOL‐Box) synthesized from 1,1′‐bi‐2‐naphthol (BINOL), the enantioselective addition of diethylzinc to aryl aldehydes proceeded smoothly to give secondary aryl alcohols in good yield with good enantioselectivity. Interestingly, the yields and enantioselectivities were affected by the mixing sequence of the reactants. Furthermore, the synthesis of both enantiomers of the addition products has been achieved using the same ligands by choosing achiral additives, Ti(O‐iPr)4 and 4A molecular sieves. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
Metal‐catalyzed intramolecular C?H amination of alkyl azides constitutes an appealing approach to alicyclic amines; challenges remain in broadening substrate scope, enhancing regioselectivity, and applying the method to natural product synthesis. Herein we report an iron(III) porphyrin bearing axial N‐heterocyclic carbene ligands which catalyzes the intramolecular C(sp3)–H amination of a wide variety of alkyl azides under microwave‐assisted and thermal conditions, resulting in selective amination of tertiary, benzylic, allylic, secondary, and primary C?H bonds with up to 95 % yield. 14 out of 17 substrates were cyclized selectively at C4 to give pyrrolidines. The regioselectivity at C4 or C5 could be tuned by modifying the reactivity of the C5–H bond. Mechanistic studies revealed a concerted or a fast re‐bound mechanism for the amination reaction. The reaction has been applied to the syntheses of tropane, nicotine, cis‐octahydroindole, and leelamine derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号