首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An elementary and ecological method has been designed for the biosynthesis of palladium nanoparticles, through the utilization of aqueous extract of red tea (Hibiscus sabdariffa L.) as a reducing and stabilizing agent. The nanoparticles obtained were characterized through UV–visible spectroscopy, transmission election microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning election microscopy, energy‐dispersive X‐ray analysis and inductively coupled plasma analysis. The nanoparticles with spherical shape and dimensions of approximately 10 nm were used as a heterogeneous catalyst for Suzuki coupling reactions under mild conditions. The high efficiency of the catalytic reaction was affirmed by the good yields of products, easy work‐up, absence of palladium leached from the support and smooth recovery of catalyst.  相似文献   

2.
A facile and green route for the synthesis of palladium nanoparticles (NPs) was developed utilizing non‐toxic and renewable natural green tea extract as the reducing, stabilizing and capping agent. The as‐prepared Pd‐NPs@G.Tea extract was characterized using UV–visible spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, transmission electron microscopy and energy‐dispersive X‐ray spectroscopy. The Pd‐NPs@G.Tea extract could be used as an efficient and heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo, bromo and chloro moieties, and also for the reduction of nitroarenes using sodium borohydride in an environmentally friendly medium. Excellent yields of products were obtained with a wide range of substrates and the catalyst was recycled multiple times without any significant loss of its catalytic activity.  相似文献   

3.
Betti base‐modified Fe3O4 nanoparticles have been successfully designed and synthesized for the first time through the condensation of Fe3O4 magnetic nanoparticles coated by (3‐aminopropyl)triethoxysilane with β‐naphthol and benzaldehyde. Their application as a novel magnetic nanocatalyst in the Knoevenagel condensation and also application to immobilization of palladium nanoparticles for Suzuki coupling reactions have been investigated which opens a new field for application of Betti base derivatives in organic transformations. The synthesized inorganic–organic hybrid nanocatalyst has been fully been characterized using Fourier transform infrared, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, energy‐dispersive X‐ray, wavelength‐dispersive X‐ray and X‐ray photoelectron spectroscopies and inductively coupled plasma techniques. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs with no significant loss of its catalytic efficiency. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Biguanidine‐functionalized chitosan was synthesized and combined with palladium nanoparticles to yield a recyclable, environmentally benign, heterogeneous catalytic system for the Suzuki–Miyaura C–C coupling reaction. The catalyst was characterized using various techniques. The catalyst was used in Suzuki cross‐coupling reactions of various aryl halides, including less reactive chlorobenzenes, with phenylboronic acid to give biaryls without any additive or ligand. A reusability test demonstrated that the catalyst was highly efficient even after six runs. Solid‐phase poisoning and leaching tests indicated that the catalyst has a heterogeneous nature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A facile and green route for the synthesis of palladium nanoparticles was developed utilizing non‐toxic and renewable natural Rosa canina fruit extract as the reducing, stabilizing and capping agent, and they were applied as a heterogeneous catalyst for Suzuki coupling reactions between phenylboronic acid and a range of aryl halides containing iodo, bromo and chloro moieties in water under moderate reaction conditions. The structural investigation of the generated nanoparticles was performed with UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and energy‐dispersive X‐ray analysis. The method has some advantages such as high yields, efficiency, elimination of surfactant, chemical reductants, ligand and organic solvent, economic, cleaner reaction profiles, heterogeneous catalysis, simple methodology and easy workup. The catalyst can be recovered and reused seven times without any significant decrease in catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A green method for the synthesis of supported Pd nanoparticles (NPs) using pine needle extract as the reducing agent and the extracted residue of pine needle (RPN) as the carrier is described. The Pd/RPN nanocomposites were characterized using Fourier transform infrared, UV–visible, inductively coupled plasma atomic emission and X‐ray photoelectron spectroscopies, transmission electron microscopy and X‐ray diffraction. The spherical Pd NPs had a mean particle size of 3.25 nm and were evenly distributed on the RPN surface. More importantly, the Pd/RPN nanocomposite, as a heterogeneous catalyst, presented superior catalytic activity for the Suzuki coupling reaction. The yield of the reaction of 4‐bromotoluene with phenylboronic acid catalyzed by Pd0.03/RPN reached 98% with low Pd loading (0.1 mmol%) at room temperature for 30 min. In addition, the catalyst could be easily separated by centrifugation and reused at least six times without significant loss of activity.  相似文献   

7.
A simple and eco‐friendly procedure has been devised for the green synthesis of palladium nanoparticles, using the aqueous extract of herbal tea (Stachys lavandulifolia), a renewable and nontoxic natural phyto‐exudate. The water‐soluble components of the extract act as reducing agent and stabilizer. This green route does not require a surfactant or capping agent for the growth of palladium nanoparticles. The generated nanoparticles were analysed using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X‐ray analysis and inductively coupled plasma. The palladium nanoparticles having spherical shape and dimensions of between 5 and 7 nm were employed as a homogeneous catalyst for Suzuki coupling reactions conducted in water under mild conditions. Good yields of products, a facile work‐up, no evidence of leached palladium from the catalyst surface and smooth recovery of the catalysis by adding ethyl acetate, which could be reused at least eight times, confirm the very good efficiency of the catalytic reaction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
S ‐Benzylisothiourea complex of palladium supported on modified Fe3O4 magnetic nanoparticles (Pd‐SBTU@Fe3O4) is reported for carbon–carbon coupling through the Suzuki coupling reaction. Also, the synthesis of polyhydroquinoline derivatives is reported in the presence of Pd‐SBTU@Fe3O4 as nanocatalyst. The prepared nanoparticles were characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, vibrating sample magnetometry and inductively coupled plasma atomic emission spectroscopy. The nanocatalyst was easily recovered using an external magnet and reused several times without significant loss of its catalytic efficiency. The heterogeneity of Pd‐SBTU@Fe3O4 was studied using hot filtration.  相似文献   

9.
A class of magnetic nanoparticles modified by 2-(aminomethyl)phenols has been successfully designed and synthesized as a reusable catalyst for Knoevenagel reaction. What's more, such nanomaterial also proved as suitable carrier for immobilization of palladium nanoparticles and the obtained composite exerted potent catalytic activity in Suzuki coupling reactions. Both of the (aminomethyl)phenols-modified nanoparticles and its related palladium nanocatalyst could be easily separated and reused for several consecutive runs by magnetic decantation without significant loss of their catalytic efficiency.  相似文献   

10.
Surface modification of Fe3O4 nanoparticles with triethoxyethylcyanide groups was used for the immobilization of palladium nanoparticles to produce Fe3O4/Ethyl‐CN/Pd. The catalyst was characterized using Fourier transform infrared, wavelength‐dispersive X‐ray, energy‐dispersive X‐ray and X‐ray photoelectron spectroscopies, field‐emission scanning electron and transmission electron microscopies, and X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analyses. In this fabrication, cyano groups played an important role as a capping agent. The catalytic behaviour of Fe3O4/Ethyl‐CN/Pd nanoparticles was measured in the Suzuki cross‐coupling reaction of various aryl halides (Ar? I, Ar? Br, Ar? Cl) with phenylboronic acid in aqueous phase at room temperature. Interestingly, the novel catalyst could be recovered in a facile manner from the reaction mixture by applying an external magnet device and recycled seven times without any significant loss in activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Three iminophosphine ligands having soft phosphorus and hard nitrogen atoms and their Pd(II) complexes were synthesized and characterized using 1H NMR, 13C NMR, 31P NMR and Fourier transform infrared spectroscopic techniques. Also, electrochemical properties of the iminophosphines and their Pd(II) complexes were investigated in acetonitrile–tetrabutylammonium perchlorate solution with cyclic and square wave voltammetry techniques. All Pd(II) complexes were evaluated as catalysts for carbonylative cross‐coupling reactions of aryl iodides with phenylboronic acid. The Suzuki carbonylation of aryl iodides at 80 °C under balloon pressure of carbon monoxide in the presence of K2CO3 as a base was examined, and good to high conversions and excellent selectivities were obtained.  相似文献   

12.
This paper develops a green method for in situ decorated of palladium nanoparticles over Fe3O4 nanoparticles, by utilizing Strawberry fruit extract and ultrasound irradiations, with no use of any toxic reducing agent. The structure's characterization is represented via diverse analytical methods such as FT-IR, FE-SEM, TEM, WDX, ICP, EDS and XXPS. Catalytic efficiency of magnetic Fe3O4@Strawberry/Pd nanocatalyst is investigated in production of different biphenyls with good turnover frequencies (TOF) and turnover numbers (TON) through Suzuki coupling reactions. Furthermore, the catalyst could be recovered and reused 7 runs without considerable palladium leaching or alteration in its performance.  相似文献   

13.
Biochar is a stable and carbon‐rich solid which has a high density of carbonyl, hydroxyl and carboxylic acid functional groups on its surface. In this work, the surface of biochar nanoparticles (BNPs) was modified with 3‐choloropropyltrimtoxysilane and further 2‐(thiophen‐2‐yl)‐1H‐benzo[d]imidazole was anchored on its surface. Then, palladium nanoparticles were fabricated on the surface of the modified BNPs and further the catalytic application was studied as recyclable biocatalyst in carbon–carbon coupling reactions such as Suzuki–Miyaura and Heck–Mizoroki cross‐coupling reactions. The structure of the catalyst was characterized using scanning electron microscopy, transmission electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, X‐ray diffraction and atomic absorption spectroscopy. The catalyst can be reused several times without a decrease in its catalytic efficiency. In addition to the several advantages reported, application of biochar as catalyst support for the first time is a major novelty of the present work.  相似文献   

14.
CO2是廉价的C1源,同时具有无毒、储量丰富的优点, 符合绿色化学发展要求. 利用 CO2构筑新的 C–C 键是化学固定CO2的重要方法. Β,γ-不饱和酯类结构单元是许多生物活性分子的重要组成部分, 经由双π-烯丙基钯中间体与 CO2反应, 合成新的β,γ-不饱和酯类化合物, 具有重要意义. CO2与有机硼化合物的羧化反应已有报道, 有机硼化合物具有低毒、对水不敏感等优点. 但是已报道的羧化 Suzuki 偶联反应存在诸多缺点: (1) 需要使用含膦或者氮杂环卡宾配体的催化剂, 而这些催化剂的制备过程使前期实验步骤变得冗长, 同时反应液的酸化后处理过程也会造成环境污染; (2) 有机硼试剂的官能团兼容范围窄, 限制了底物范围的拓展. 本课题组以原位生成的纳米钯粒子为催化剂, 在 CO2存在的温和条件下, 高效实现了苄氯与烯丙基硼酸频哪醇酯的羧化 Suzuki 偶联反应. 反应过程中无其它配体加入, 反应结束后不需要酸化或酯化的后处理过程. 该反应将具有广泛的官能团兼容性.本文以 TBAB 稳定的纳米钯粒子为催化剂, 在温和条件下, 实现了氯甲基芳香化合物、烯丙基硼酸频哪醇酯和 CO2的三组分羧化 Suzuki 偶联反应. 最佳反应条件为: Pd(acac)2(5 mol%)、TBAB (0.7 mmol, 1.4 equiv.)、KF (1 mmol, 2.0 equiv.)、苄基卤代物 (0.5 mmol)、烯丙基硼酸频哪醇酯 (0.6 mmol, 1.2 equiv.)、CO2(2.0 Mpa)、溶剂 THF (5 mL), 50 oC 反应 24 h. 在最佳反应条件下, 苯环、萘环以及杂芳环的氯甲基化合物均可发生该羧化反应. 苯环上取代基的位置对产物的收率有影响. 当使用 1-溴甲基萘作为底物时反应也能够发生, 收率与 1-氯甲基萘作为底物时的收率相当. 与已报道有机硼试剂的羧化反应相比, 该反应体系无需加入配体, 原位生成了纳米钯粒子, 避免了催化剂或者配体的复杂制备过程. 该反应中, 氟离子的存在是必要的, 对烯丙基硼酸频哪醇酯具有活化作用.  相似文献   

15.
Improved performance through milling: A method for enhancing the catalytic activity of supported metal nanoparticles is reported. This method enhances the activity for the ethanol electro-oxidation of a supported palladium catalyst. The much higher catalytic performance is ascribed to the increased electrochemically active surface area as well as the generation of high-index facets at the milled nanoparticle surface.  相似文献   

16.
We report a novel strategy for the synthesis of magnetic nanocomposite for highly efficient catalysis. Poly(glycidyl methacrylate) (PGMA) chains were grafted to the surface of magnetic nanoparticles (MNPs) through surface-initiated reversible addition-fragmentation chain transfer polymerization. Then, the oxirane rings in the PGMA chains were opened with 2,6-diamino pyridine (DAP) molecules as ligands to prepare the solid support. Finally, this magnetic nanocomposite was used for the immobilization of gold nanoparticles. Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, transmission electron microscopy, scanning electron microscopy, gel permeation chromatography, vibrating sample magnetometry, and atomic absorption spectroscopy were used for characterization of the catalyst. The loading of gold nanoparticles on the solid support was 0.52 mmol/g. The catalytic activity of the prepared catalyst (MNP@PGMA@DAP@Au) was evaluated for the reduction of nitro compounds and C–C coupling reaction in water. The catalyst can be easily recovered and reused seven times without significant loss of catalytic activity.  相似文献   

17.
Palladium nanoparticles were supported on a bed of Fe3O4@‐NH2@Murexide using a simple and efficient method, and characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, scanning and transmission electron microscopies and inductively coupled plasma optical emission spectrometry. The catalytic system showed great efficiency in cross‐coupling reaction of aryl iodides and arylboronic acid and in Sonogashira cross‐coupling reaction in the green solvent EtOH–H2O (1:1). The isolation and recovery of the catalyst were simple and facile and it could be used for several successive Suzuki–Miyaura coupling and Sonogashira cross‐coupling reactions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
19.
A mesoporous hybrid material containing a 15-membered triazamacrocyclic triolefinic palladium(0) complex was prepared and successfully tested as a reusable heterogeneous catalyst for Suzuki cross-couplings in organic solvents.  相似文献   

20.
A simple and efficient procedure for Suzuki coupling of aryl bromides/iodides with aryl- and alkylboronic acids catalyzed by in situ-generated palladium(0) nanoparticles in water without any ligand in open air to produce a variety of functionalized biaryls and alkyl-aryls has been developed. The boronic acids act here as the reducing agent for the formation of Pd nanoparticles. The reactions are remarkably fast (5 min) and high yielding. The catalyst is recyclable up to three runs without loss of efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号