首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe the reaction of anion [RhCl6]3− with a series of hydantoin ligands (HL1, HL2 and HL3 = 5‐methyl‐5‐(2‐, 3‐ and 4‐pyridyl)‐2,4‐imidazolidenedione, respectively). Based on spectroscopic, cyclic voltammetric, elemental and MS analyses, the complexes have the general formula K[RhCl2(L1)2] ( 1 ), cis ‐ and trans ‐K[RhCl4(HL2)2] ( 2a and 2b ) and cis ‐ and trans ‐K[RhCl4(HL3)2] ( 3a and 3b ). Complexes 2a , 2b , 3a and 3b were characterized successfully using infrared, 1H NMR and 13C NMR spectral analyses. Dissolution of complex 1 in dimethylsulfoxide (DMSO) led to elimination of one KL1 ligand and coordination of two DMSO molecules as ligands and transformation of this complex to cis ‐ and trans ‐[RhCl2L1(DMSO)2] ( 1a and 1b ). Recrystallization led to separation and isolation of crystals of 1a from the initial mixture. X‐ray analysis results showed that this complex was crystallized as solvated complex cis ‐[RhCl2L1(DMSO)2]DMSO. The catalytic activity of these complexes was then evaluated for the hydrogenation of various ketones.  相似文献   

2.
The synthesis and characterisation of two aluminium diphosphamethanide complexes, [Al(tBu)22P,P′‐Mes*PCHPMes*}] ( 3 ) and [Al(C6F5)22P,P′‐Mes*PCHPMes*}] ( 4 ), and the silylated analogue, Mes*PCHP(SiMe3)Mes* ( 5 ), are reported. The aluminium complexes feature four‐membered PCPAl core structures consisting of diphosphaallyl ligands. The silylated phosphine 5 was found to be a valuable precursor for the synthesis of 4 as it cleanly reacts with the diaryl aluminium chloride [(C6F5)2AlCl]2. The aluminium complex 3 reacts with molecular dihydrogen at room temperature under formation of the acyclic σ2λ33λ3‐diphosphine Mes*PCHP(H)Mes* and the corresponding dialkyl aluminium hydride [tBu2AlH]3. Thus, 3 belongs to the family of so‐called hidden frustrated Lewis pairs.  相似文献   

3.
A series of polyethylene glycol‐containing imidazolium‐functionalized phosphine ligands (mPEG‐im‐PPh2) were successfully synthesized and used in the rhodium‐catalyzed hydrosilylation of olefins. The results indicate that the RhCl3/mPEG‐im‐PPh2 catalytic system exhibits both excellent activity and selectivity for the β‐adduct. In addition, the catalytic system may be recycled at least six times.  相似文献   

4.
The synthesis and structural characterization of two azirine rhodium(III ) complexes are described. The stabilization, N‐coordination and phenylgroup π‐stacking of the highly reactive and strained 3‐phenyl‐2H‐azirine by transition metal coordination is observed. The reaction of the dimeric complex [(η5‐C5Me5)RhCl2]2 with 3‐phenyl‐2H‐azirine (az) in CH2Cl2 at room temperature in a 1:2 molar ratio afforded the neutral mono‐azirine complex [(η5‐C5Me5)RhCl2(az)]. The subsequent reaction of [(η5‐C5Me5)RhCl2]2 with six equivalents of az and 4 equivalents of AgOTf yielded the cationic tris‐azirine complex [(η5‐C5Me5)Rh(az)3](OTf)2. After purification, all complexes have been fully characterized. The molecular structures of the novel rhodium(III ) complexes exhibit slightly distorted octahedral coordination geometries around the metal atoms.  相似文献   

5.
Mono‐ and Dinuclear Transition Metal Complexes with Methylcycloarsoxane as Ligand We describe the synthesis of two homo‐ and dinuclear complexes containing hexameric methylcycloarsoxane as ligand. The reaction of (MeAsO)n with RhCl3 results in the formation of [(RhCl3)2{cyclo‐(MeAsO)6}] ( 1 ), the reaction with RhBr3 in the formation of [(RhBr3)2{cyclo‐(MeAsO)6}] ( 2 ). Small changes in the reaction temperature lead to the formation of the related mononuclear complex [RhBr3{cyclo‐(MeAsO)6}] ( 3 ). We were also able to synthesis and characterise a hetero‐ and dinuclear complex [(RuCl3)(PdCl2){cyclo‐(Me6As6O7)}] ( 4a ) and [(RhCl3)(PdCl2){cyclo‐(MeAsO)6}] ( 4b ) respectively, the first example of a methylcycloarsoxan coordinating two different transition metal atoms with different coordination spheres.  相似文献   

6.
Five monophosphine‐substituted diiron propane‐1,2‐dithiolate complexes as the active site models of [FeFe]‐hydrogenases have been synthesized and characterized. Reactions of complex [Fe2(CO)6{μ‐SCH2CH(CH3)S}] ( 1 ) with a monophosphine ligand tris(4‐methylphenyl)phosphine, diphenyl‐2‐pyridylphosphine, tris(4‐chlorophenyl)phosphine, triphenylphosphine, or tris(4‐fluorophenyl)phosphine in the presence of the oxidative agent Me3NO·2H2O gave the monophosphine‐substituted diiron complexes [Fe2(CO)5(L){μ‐SCH2CH(CH3)S}] [L = P(4‐C6H4CH3)3, 2 ; Ph2P(2‐C5H4N), 3 ; P(4‐C6H4Cl)3, 4 ; PPh3, 5 ; P(4‐C6H4F)3, 6 ] in 81%–94% yields. Complexes 2 – 6 have been characterized by elemental analysis, spectroscopy, and X‐ray crystallography. In addition, electrochemical studies revealed that these complexes can catalyze the reduction of protons to H2 in the presence of HOAc.  相似文献   

7.
Reactions of triarylphosphines with fluoroantimony(III) triflates give phosphine antimony(III) complexes, which undergo spontaneous reductive elimination of fluorophosphonium cations. The resulting phosphine antimony(I) complexes catenate to give the first examples of cationic antimony bicyclic compounds, [(R3P)4Sb6]4+, featuring a bicyclo[3.1.0]hexastibine framework stabilized by four phosphine ligands. The unprecedented 14‐electron redox process illustrates the generality of the reductive catenation method.  相似文献   

8.
In quest of new metallo‐pharmaceuticals with enhanced anticancer activity, four new phosphine‐ and carbodithioate‐based Pd(II) complexes of the type [(R)CS2Pd(PR3)Cl] (where R = 4‐(2‐hydroxyethyl)piperazine ( 1 , 2 ), dibenzyl ( 3 , 4 ); PR3 = diphenyl(p ‐tolyl)phosphine ( 1 , 3 ), tris(4‐tolyl)phosphine ( 2 , 4 )) were synthesized and characterized using elemental analysis, Fourier transform infrared and NMR (1H, 13C and 31P) spectroscopies and single‐crystal X‐ray diffraction. The X‐ray diffraction data confirmed the pseudo square‐planar geometry ensuring bidentate coordination mode of carbodithioate ligands. Anticancer activity of the synthesized complexes and their ligands was assessed against human lung (A549), breast (MCF‐7) and prostate (PC3) carcinoma cells using MTT assay. All the tested compounds showed activity in micromolar range. In many cases, the cytotoxicity of the synthesized complexes was higher than or comparable to that of the standard drugs cisplatin and doxorubicin. Complex 3 emerged as the most promising compound with the lowest IC50 values of 4.83, 3.72 and 5.11 μM for A549, MCF‐7 and PC3 carcinoma cell lines, respectively. DNA binding studies were also carried out using UV–visible spectroscopy. We extended our investigations to explore the mechanism of anticancer activity using in silico tools. Based on the mechanism of action of standard drugs used, extensive docking studies were carried out on the three different biomolecular targets.  相似文献   

9.
Only [RuCl2(p‐cymene)(PR3)] complexes where the phosphine ligand, PR3, is both strongly basic and bulky proved to be effective catalysts for the controlled atom transfer radical polymerisation (ATRP) of methyl methacrylate and styrene. The best phosphine ligands were typically P(i‐Pr)3, P(cyclohexyl)2Ph, P(cyclohexyl)3, and P(cyclopentyl)3. Less basic and/or bulky phosphines led to ineffective systems for ATRP. Tricyclohexylarsine gave rise to a highly efficient catalyst system. However, related complexes in which the phosphine ligand was replaced by tricyclohexylstibine, nitrogen (piperidine and 4‐cyanopyridine) and carbon ligands (alkyl isocyanides) proved to be inefficient. The observation of a direct relationship between the p‐cymene lability (measured by TGA) and catalyst activity suggests that p‐cymene release is a prerequisite for the polymerisation process.  相似文献   

10.
MCM‐41‐supported bidentate phosphine rhodium complex (MCM‐41‐2P‐RhCl3) was conveniently synthesized from commercially available and cheapγ‐aminopropyltriethoxysilane via immobilization on MCM‐41, followed by reacting with diphenylphosphinomethanol and rhodium chloride. It was found that the title complex is a highly efficient catalyst for the hydrosilylation of olefins with triethoxysilane and can be recovered and recycled by a simple filtration of the reaction solution and used for at least 10 consecutive trials without any decreases in activity.  相似文献   

11.
Half‐sandwich manganese methylenephosphonium complexes [Cp(CO)2Mn(η2‐R2P?C(H)Ph)]BF4 were obtained in high yield through a straightforward reaction sequence involving a classical Fischer‐type manganese complex and a secondary phosphine as key starting materials. The addition of various nucleophiles (Nu) to these species took place regioselectively at the double‐bonded carbon center of the coordinated methylenephosphonium ligand R2P+?C(H)Ph to produce the corresponding chiral phosphine complexes [Cp(CO)2Mn(κ1‐R2P? C(H)(Ph)Nu)], from which the phosphines were ultimately recovered as free entities upon simple irradiation with visible light. The synthetic potential of this umpolung approach is illustrated herein by the preparation of novel chiral pincer‐type phosphine–NHC–phosphine ligand architectures.  相似文献   

12.
We successfully developed phosphorescent cyclometallated iridium‐containing metallopolymers, which are near‐red luminescent iridium complexes bearing phosphine‐containing copolymers used as polymer ligands, and investigated their photoluminescence and electroluminescence behavior. The phosphine copolymer ligand made from methyl methacrylate and 4‐styryldiphenylphosphine can be used as an anchor, which coordinates luminescent iridium units to form the metallopolymer easily. Organic light‐emitting diodes were fabricated from the metallopolymer and its nonpolymer analog, [IrCl(piq)2PPh3]. These complexes exhibited quite similar luminescence behavior, except for emission from the free‐phosphine‐units in the polymer side chain and their energy‐transferring properties from host to guest materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4366–4378, 2009  相似文献   

13.
The coordination chemistry of the stiboranes Ph4Sb(OTf) ( 1 a , OTf = OSO2CF3) and Ph3Sb(OTf)2 ( 3 ) with Lewis bases has been investigated. The significant steric encumbrance of the Sb center in 1 a precludes interaction with most ligands, but the relatively low steric demands of 4‐methylpyridine‐N‐oxide (OPyrMe) and OPMe3 enabled the characterization of [Ph4Sb(OPyrMe)][OTf] ( 2 a ) and [Ph4Sb(OPMe3)][OTf] ( 2 b ), rare examples of structurally characterized complexes of stibonium acceptors. In contrast, 3 was found to engage a variety of Lewis bases, forming stable isolable complexes of the form [Ph3Sb(donor)2][OTf]2 [donor=OPMe3 ( 6 a ), OPCy3 ( 6 b , Cy=cyclohexyl), OPPh3 ( 6 c ), OPyrMe ( 6 d )], [Ph3Sb(dmap)2(OTf)][OTf] ( 6 e , dmap=4‐(dimethylamino)pyridine) and [Ph3Sb(donor)(OTf)][OTf] [donor=1,10‐phenanthroline ( 7 a ) or 2,2′‐bipy ( 7 b , bipy=bipyridine)]. These compounds exhibit significant structural diversity in the solid‐state, and undergo ligand exchange reactions in line with their assignment as coordination complexes. Compound 3 did not form stable complexes with phosphine donors, with reactions instead leading to redox processes yielding SbPh3 and products of phosphine oxidation.  相似文献   

14.
Investigating the synthesis and properties of diiron azadithiolate complexes is one of the key topics for mimicking the active site of [FeFe]‐hydrogenases, which might be very useful for the design of new efficient catalysts for hydrogen production and the development of a future hydrogen economy. A series of new phosphine‐substituted diiron azadithiolate complexes as models for the active site of [FeFe]‐hydrogenases are described. A novel and efficient way was firstly established for the preparation of phosphine‐substituted diiron azadithiolate complexes. The reaction of Fe2(μ‐SH)2(CO)6 and phosphine ligands L affords the intermediate Fe2(μ‐SH)2(CO)5L ( A ). The intermediate reacts in situ with a premixed solution of paraformaldehyde and ammonium carbonate to produce the target phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NH](CO)5L ( 1a – 1f ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3, PPh2(OCH2CH3)). Furthermore, reactions of the intermediate A with I‐4‐C6H4N(CH2Cl)2 in the presence of Et3N give the phosphine‐substituted diiron azadithiolate complexes Fe2[(μ‐SCH2)2NC6H4–4‐I](CO)5L ( 2a – 2e ) (L = P(C6H4–4‐CH3)3, P(C6H4–3‐CH3)3, P(C6H4–4‐F)3, P(C6H4–3‐F)3, P(2‐C4H3O)3). All the complexes were fully characterized using elemental analysis, IR and NMR spectroscopies and, particularly for 1a , 1c – 1e , 2a and 2c , single‐crystal X‐ray diffraction analysis. In addition, complexes 1a – 1f and 2a – 2e were found to be catalysts for H2 production under electrochemical conditions. Density functional theory calculations were performed for the reactions of Fe2(μ‐SH)2(CO)6 + P(C6H4–4‐CH3)3.  相似文献   

15.
High‐molecular‐weight poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene], poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl) acetylene], and their copolymers were synthesized by the polymerization with TaCl5n‐Bu4Sn. The obtained polymers were sulfonated by using acetyl sulfate to give sulfonated poly(diphenylacetylene)s with different degrees of substitution. The degrees of sulfonation of poly[1‐phenyl‐2‐(4‐t‐butylphenyl)acetylene] and copolymers were in the range of 0.57–0.85. When poly[1‐phenyl‐2‐(4‐trimethylsilylphenyl)acetylene] was sulfonated, the sulfonated poly(diphenylacetylene) with the highest degree of sulfonation was obtained among all the polymers in this study. Its degree of sulfonation was 1.55. All the sulfonated polymers exhibited high CO2 permselectivity, and their CO2/N2 separation factor were over 31. The sulfonated poly(diphenylacetylene) with the highest degree of sulfonation showed the highest CO2/N2 separation factor of 75. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6463–6471, 2009  相似文献   

16.
A series of triarylphosphanes ( 1a , 2a , 3a , 4a , 5a , 6a , 7a , 8a , 9a , 10a , 11a ) have been synthesized. An X‐ray crystal structure analysis of (2‐bromophenyl)diphenylphosphane ( 1a ) unambiguously confirmed the constitution of the functionalized phosphane. The hydrosilylation reaction of styrene with triethoxysilane catalyzed with RhCl3/triarylphosphane was studied. In comparison with the classic Wilkinson's catalyst, rhodium complexes with functionalized triarylphosphane ligands are characterized by a very high catalytic effectiveness for the hydrosilylation of alkene. Among these catalysts tested, RhCl3/diphenyl(2‐(trimethylsilyl)phenyl)phosphane ( 8a ) exhibited excellent catalytic properties. Using this silicon‐containing phosphane ligand for the rhodium‐catalyzed hydrosilylation of styrene, both higher conversion of alkene and higher β‐adduct selectivity were obtained than with Wilkinson's catalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The feasibility of capillary electrophoresis for distinguishing between the rhodium(III) species occurring in different acidic environments has been demonstrated. The separation was optimum under acidic electrolyte conditions in which the complexed Rh species were at their most stable and the electroosmotic flow approached zero, thereby aiding resolution. Identification of the forms of Rh and estimation of their relative equilibrium content were accomplished by use of a diode-array detector. The distribution of the metal complexes was highly dependent on the nature and concentration of the acid and the age of the rhodium stock solutions. On dilution Rh(III) tends to be readily hydrolyzed, giving rise to a wider variety (and a varied distribution) of complexed forms. In 0.1 mol L–1 HCl, four differently charged chloro complexes – RhCl4(H2O)2 , RhCl3(OH)(H2O)2 , RhCl3(H2O)3, and RhCl2(H2O)4 +?–? were separated and identified. When a stock solution in 11 mol L–1 HCl was run, Rh produced a major peak ascribed to RhCl6 3–and two slowly migrating peaks from ions in which one or two of the chloride ligands were probably replaced by water and hydroxyl ion, as a result of hydrolysis. The aquatic cationic species were found to be predominant in HClO4 and HNO3 solutions, whereas only negatively charged forms of Rh(III) occurred in sulfuric acid. This speciation information opens also new possibilities of assessing the catalytic activity of Rh in kinetic reactions.  相似文献   

18.
Reductive carbonylation of rhodium(III) chloride complexes, commercial RhCl3 · nH2O neutralized with BaCO3, (Me2NH2)2[RhCl5(DMF)], (PPh4)[RhCl4(H2O)2], RhCl3(DMF)3, RhCl3(CH3CN)3, RhCl3(CH3CN)2(DMF), [Rh(CO)2Cl3]2, and rhodium(I) complex, Rh(PPh3)3Cl, by N,N-dimethylformamide (DMF) is studied. The data obtained support the conception of direct carbonyl group transfer from DMF molecule to the Rh metal center. The mechanistic scheme of carbonylation process is refined and discussed with regard of new experimental results.  相似文献   

19.
Summary The activities of the nicotine complexes of rhodium(III)-[RhCl3(nicH+)3](PF6)3 andtrans-[RhCl2(nic)4](PF6) (nicH+=monoprotonated S-nicotine, nic=unprotonated S-nicotine)—were studied onEscherichia coli B growing in a minimal glucose medium in both lag- and log-phases.[RhCl3(nicH+)3](PF6)3 at 50 ppm caused bacteriostasis, and at 100 ppm or more was bactericidal, whereastrans-[RhCl2(nic)4](PF6) at 50 ppm or more was bactericidal in the lag-phase. However [RhCl3(nicH+)3](PF6)3 delayed cell division ofEscherichia coli B just entering the log phase by two generation times, whereby the bacteria transformed from the normal unicellular shape to filamentous forms. Cytotoxicities are reported.  相似文献   

20.
The catalytic performances of Co‐Rh/Fe3O4 catalysts modified with phosphine ligands (PPh3) and its analogues on dicyclopentadiene hydroformylation were evaluated. Among these catalysts, Co‐Rh/Fe3O4 modified with tris(p‐trifluoromethylphenyl)phosphine was determined to be effective for monoformyltricyclodecanes production, whereas Co‐Rh/Fe3O4 modified with PPh3 or tri‐p‐tolylphosphine was effective for the diformyltricyclodecanes production. To investigate the ligand effects, the complex catalyst system (Co‐Rh/Fe3O4 and phosphine ligand) was subjected to pretreatment with syngas and then characterized by thermogravimetry and differential thermal analysis (TG‐DTA). It was determined that the threshold decomposition temperature reflected the corresponding Rh‐phosphine interaction strength, affecting the catalytic selectivity toward different products. A weak Rh‐phosphine interaction was desirable to produce monoformyltricyclodecanes with fast reaction kinetics, whereas a strong Rh‐phosphine complex was required for the synthesis of diformyltricyclodecanes. In addition to the selectivity rule shown in the PPh3 series, experiments with other ligands also demonstrated similar selectivity trends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号