首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A green, novel and extremely efficient nanocatalyst was successfully synthesized by the immobilization of Ni as a transition metal on Fe3O4 nanoparticles coated with tryptophan. This nanostructured material was characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, inductively coupled plasma optical emission spectroscopy, vibrating sample magnetometry and X‐ray diffraction. The prepared nanocatalyst was applied for the oxidation of sulfides, oxidative coupling of thiols and synthesis of 5‐substituted 1H‐tetrazoles. The use of non‐toxic, green and inexpensive materials, easy separation of magnetic nanoparticles from a reaction mixture using a magnetic field, efficient and one‐pot synthesis, and high yields of products are the most important advantages of this nanocatalyst.  相似文献   

2.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

3.
A novel Cu (II) Schiff‐base complex immobilized on core‐shell magnetic Fe3O4 nanoparticles (Fe3O4@SPNC) was successfully designed and synthesized. The structural features of these nanoparticles were studied and confirmed by using various techniques including FT‐IR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDS), vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD), wavelength dispersive X‐ray spectroscopy (WDX), and inductively coupled plasma (ICP). These newly synthesized nanoparticles have been used as efficient heterogeneous catalytic system for one‐pot multicomponent synthesis of new pyrano[2,3‐b]pyridine‐3‐carboxamide derivatives. Notably, the catalyst could be easily separated from the reaction mixture by using an external magnet and reused for several successive reaction runs with no significant loss of activity or copper leaching. The present protocol benefits from a hitherto unreported MNPs‐immobilized Cu (II) Schiff‐base complex as an efficient nanocatalyst for the synthesis of newly reported derivatives of pyrano[2,3‐b]pyridine‐3‐carboxamide from one‐pot multicomponent reactions.  相似文献   

4.
A novel heterogeneous nanocatalyst was fabricated by depositing copper iodide and Fe3O4 nanoparticles on imidazolium‐based ionic liquid‐grafted cellulose and successfully characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis, powder X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry and flame atomic absorption spectrometry. It was employed to catalyse the reaction of terminal acetylenes with sulfonyl azides to afford highly reactive sulfonyl ketenimine intermediates which were subsequently trapped by secondary amines to give N ‐sulfonylamidines and N ‐sulfonylacrylamidines under solvent‐free conditions at room temperature. Good to excellent yields, very short reaction times, eco‐friendly processing, easy separation and reusability without significant loss of catalytic activity were found to be the notable features of this synthetic protocol.  相似文献   

5.
A moisture‐ and air‐stable heterogenized palladium catalyst was synthesized by coordination of palladium with S‐propyl‐2‐aminothiobenzamide supported on Fe3O4 magnetic nanoparticles. The prepared nanocatalyst was characterized using Fourier transform infrared, energy‐dispersive X‐ray and inductively coupled plasma atomic emission spectroscopies, X‐ray diffraction, vibrating sample magnetometry, transmission and scanning electron microscopies, dynamic laser scattering and thermogravimetric analysis. This catalyst could be dispersed homogeneously in water or poly(ethylene glycol) and further applied as an excellent nano‐organometal catalyst for Suzuki and Heck reactions. The catalyst was easily separated with the assistance of an external magnet from the reaction mixture and reused for several consecutive runs without significant loss of its catalytic efficiency or palladium leaching. The leaching of catalyst was examined using hot filtration and inductively coupled plasma atomic emission spectroscopy. Also, the effects of various reaction parameters on the Suzuki and Heck reactions are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The immobilization of sulfonic acid on the surface of Fe3O4 magnetic nanoparticles (MNPs) as a novel acid nanocatalyst has been successfully reported. The morphological features, thermal stability, magnetic properties, and other physicochemical properties of the prepared superparamagnetic core–shell (Fe3O4@PFBA–Metformin@SO3H) were thoroughly characterized using Fourier transform infrared (FTIR), X‐ray diffraction (XRD), energy‐dispersive X‐ray spectroscopy (EDS), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis–differential thermal analysis (TGA‐DTA), atomic force microscopy (AFM), dynamic light scattering (DLS), Brunauer–Emmett–Teller (BET), and vibrating sample magnetometer (VSM) techniques. It was applied as an efficient and reusable catalyst for the synthesis of 2‐(piperazin‐1‐yl) quinoxaline and benzimidazole derivatives via a one‐pot multiple‐component cascade reaction under green conditions. The results displayed the excellent catalytic activity of Fe3O4@PFBA–metformin@SO3H as an organic–inorganic hybrid nanocatalyst in condensation and multicomponent Mannich‐type reactions. The easy separation, simple workup, excellent stability, and reusability of the nanocatalyst and quantitative yields of products and short reaction time are some outstanding advantages of this protocol.  相似文献   

7.
A novel magnetic ferrocene‐labelled ionic liquid based on triazolium, [Fe3O4@SiO2@Triazol‐Fc][HCO3], has been synthesized and has been successfully introduced as a recyclable heterogeneous nanocatalyst. The catalytic activity of the novel magnetic nanoparticles was evaluated in the one‐pot three‐component synthesis of a wide variety of Betti bases. A simple, facile and highly efficient green method has been developed for the synthesis of kojic acid‐containing Betti base derivatives at room temperature. Additionally, this new protocol has notable advantages such as short reaction times, green reaction conditions, high yields and simple workup and purification steps. Also, the novel nanocatalyst could be easily recovered using an external magnetic field and reused for six consecutive reaction cycles without significant loss of activity. The newly synthesized nanocatalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and Brunauer–Emmett–Teller measurements.  相似文献   

8.
A novel hybrid magnetic nanocatalyst was synthesized by covalent coating of Fe3O4 magnetic nanoparticles with choline chloride–urea deep eutectic solvent using 3‐iodopropyltrimethoxysilane as a linker. The structure of this new catalyst was fully characterized via elemental analysis, transmission and scanning electron microscopies, X‐ray diffraction and Fourier transform infrared spectroscopy. It was employed in the synthesis of various 2‐amino‐4H ‐pyran derivatives in water solution via an easy and green procedure. The desired products were obtained in high yields via a three‐component reaction between aromatic aldehyde, enolizable carbonyl and malononitrile at room temperature. The employed nanocatalyst was easily recovered using a magnetic field and reused four times (in subsequent runs) with less than 8% decrease in its catalytic activity.  相似文献   

9.
A simple and green method for the synthesis of palladium nanoparticles using an aqueous extract of Sapindus mukorossi seed has been demonstrated. The synthesized nanoparticles were characterized using UV–visible spectroscopy, powxder X‐ray diffraction, energy‐dispersive X‐ray analysis and transmission electron microscopy. The nanocatalyst was successfully utilized in an efficient Suzuki–Miyaura cross‐coupling reaction at room temperature.  相似文献   

10.
In the present study, for the first time N‐(3‐silyl propyl) diethylene triamine N,N',N''‐tri‐sulfonic acid (SPDETATSA) was grafted on magnetic Fe3‐xTixO4 nanoparticles. The structure of the resulted nanoparticles was characterized based on Fourier‐transform infrared (FT‐IR), energy‐dispersive X‐ray spectroscopy (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analyses. The results confirmed the successful immobilization of sulfamic acid groups onto the magnetic support. These nanoparticles exhibited high catalytic activity as novel magnetically recyclable acid nanocatalyst in the synthesis of a diverse range of hexahydroquinolines through one‐pot tandem reactions in excellent yields. Also, this nanocatalyst performed satisfactory catalytic maintenance of activity for the synthesis of the reaction products after 4 rounds of recycling with no considerable loss of activity.  相似文献   

11.
In this paper, guanidine groups (Gn) supported on modified magnetic nanoparticles (Fe3O4–4,4′‐MDI) were synthesized for the first time. The catalyst synthesized was characterized by various techniques such as SEM (Scanning Electron Microscopy), TEM (Transmission electron microscopy), XRD ( X‐ray Diffraction ), TGA (Thermogravimetric ananlysis), EDS ( Energy‐dispersive X‐ray spectroscopy ) and VSM (vibrating sample magnetometer). The catalyst activity of modified MNPs–MDI‐Gn, as powerful basic nanocatalyst, was probed through the Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation reactions. Conversion was high under optimal conditions, and reaction time was remarkably shortened. This nanocatalyst could simply be separated and recovered from the reaction mixture by simple magnetic decantation and reused many times without significant loss of its catalytic activity. Also, the nanocatalyst could be recycled for at least seven (Knoevenagel condensation) and six (Knoevenagel and Tandem Knoevenagel–Michael‐cyclocondensation) additional cycles after they were separated by magnetic decantation and, washed with ethanol, air‐dried, and immediately reused.  相似文献   

12.
In the present work, an innovative leach proof nanocatalyst based on dendritic fibrous nanosilica (DFNS) modified with ionic liquid loaded Fe3O4 NPs and CuI salts was designed and applied for the rapid synthesis of imidazo[1,2‐a]pyridines from the reaction of phenyl acetylene, 2‐aminopyridine, and aldehydes in aqueous medium. The structure of the synthesized nanocatalyst was studied by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared (FT‐IR), flame atomic absorption spectroscopy (FAAS), energy‐dispersive X‐ray (EDX), and X‐ray diffraction (XRD), vapor–liquid–solid (VLS), and adsorption/desorption analysis (Brunauer–Emmett–Teller [BET] equation) instrumental techniques. CuI/Fe3O4NPs@IL‐KCC‐1 with high surface area (225 m2 g?1) and porous structure not only exhibited excellent catalytic activity in aqueous media but also, with its good stability, simply recovered by an external magnet and recycled for eight cycles without significant loss in its intrinsic activity. Higher catalytic activity of CuI/Fe3O4NPs@IL‐KCC‐1 is due to exceptional dendritic fibrous structure of KCC‐1 and the ionic liquid groups that perform as strong anchors to the loaded magnetic nanoparticles (MNPs) and avoid leaching them from the pore of the nanocatalyst. Green reaction media, shorter reaction times, higher yields (71–97%), easy workup, and no need to use the chromatographic column are the advantages of the reported synthetic method.  相似文献   

13.
A new nanocatalyst was synthesized by immobilization of 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine/CuI complex on ferromagnetic nanoparticles through a surface modification (FMNPs@SiO2‐TPy‐Cu). This heterogeneous catalyst was characterized using various techniques including Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, transmission and scanning electron microscopies, X‐ray diffraction, vibrating sample magnetometry and thermogravimetric analysis. The resulting nanocatalyst presented excellent catalytic activity for the regioselective syntheses of 1,4‐disubstituted 1,2,3‐triazoles and thioethers. The thermally and chemically stable, benign and economical catalyst was easily recovered using an external magnet and reused in at least five successive runs without an appreciable loss of activity.  相似文献   

14.
The efficient synthesis of novel spiro[indeno[1,2‐b]quinoxaline derivatives via the four‐component condensation of amines, ninhydrin, isatoic anhydride, and о‐phenylenediamine derivatives catalyzed by ( 3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) supported on γ‐Fe2O3 as novel heterogenous magnetic nanocatalyst was described. The novel nanocatalyst was characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FT‐IR), vibrating sample magnetometry (VSM), Field Emission Scanning Electron Microscopy (FE‐SEM), and thermal analysis (TGA‐DTG). The nanoparticles covered by (3‐oxo‐[1,2,4]triazolidin‐1‐yl)bis (butane‐1‐sulfonic acid) showed enhanced catalytic performance in the preparation of spiro[indeno[1,2‐b]quinoxaline derivatives in excellent yields. Moreover, this method showed several advantages such as mild conditions, high yields, easy work‐up, and being environmentally friendly. The catalyst can be easily separated from the reaction mixture by an external magnet, recycled, and reused several times without a noticeable decrease in catalytic activity.  相似文献   

15.
The synthesis, characterization and catalytic activity of chloroaluminate ionic liquid‐modified silica‐coated magnetic nanoparticles ([SiPrPy]AlCl4@MNPs) are described. The prepared magnetic nanocatalyst was characterized using Fourier transform infrared spectroscopy, elemental analysis, vibrating sample magnetometry, scanning and transmission electron microscopies, X‐ray diffraction and inductively coupled plasma analysis. The results showed that the ionic liquid had been successfully immobilized onto the magnetic support, and the resulting nanoparticles exhibited high catalytic activity for the synthesis of a diverse range of dihydropyrano[3,2‐b ]chromenediones via a one‐pot, three‐component and solvent‐free reaction of aromatic aldehydes, 1,3‐diones and kojic acid. This catalytic system also showed excellent activity in the selective synthesis of mono‐ and bis‐dihydropyrano[3,2‐b ]chromenediones from dialdehydes. The procedure gave the products in excellent yields and in very short reaction times. Moreover, the catalyst could be reused eight times without loss of its catalytic activity.  相似文献   

16.
Fe3O4@SiO2 nanoparticles was functionalized with a binuclear Schiff base Cu(II)‐complex (Fe3O4@SiO2/Schiff base‐Cu(II) NPs) and used as an effective magnetic hetereogeneous nanocatalyst for the N‐arylation of α‐amino acids and nitrogen‐containig heterocycles. The catalyst, Fe3O4@SiO2/Schiff base‐Cu(II) NPs, was characterized by Fourier transform infrared (FTIR) and ultraviolet‐visible (UV‐vis) analyses step by step. Size, morphology, and size distribution of the nanocatalyst were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scatterings (DLS) analyses, respectively. The structure of Fe3O4 nanoparticles was checked by X‐ray diffraction (XRD) technique. Furthermore, the magnetic properties of the nanocatalyst were investigated by vibrating sample magnetometer (VSM) analysis. Loading content as well as leaching amounts of copper supported by the catalyst was measured by inductive coupled plasma (ICP) analysis. Also, thermal studies of the nanocatalyst was studied by thermal gravimetric analysis (TGA) instrument. X‐ray photoelectron spectroscopy (XPS) analysis of the catalyst revealed that the copper sites are in +2 oxidation state. The Fe3O4@SiO2/Schiff base‐Cu(II) complex was found to be an effective catalyst for C–N cross‐coupling reactions, which high to excellent yields were achieved for α‐amino acids as well as N‐hetereocyclic compounds. Easy recoverability of the catalyst by an external magnet, reusability up to eight runs without significant loss of activity, and its well stability during the reaction are among the other highlights of this catalyst.  相似文献   

17.
In this work, for the first time, Solanum melongena plant extract was used for the green synthesis of Pd/MnO2 nanocomposite via reduction osf Pd(II) ions to Pd(0) and their immobilization on the surface of manganese dioxide (MnO2) nanoparticles (NPs) as an effective support. The synthesized nanocomposite were characterized by various analytical techniques such as Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy dispersive X‐ray spectroscopy (EDS) and UV–Vis spectroscopy. The catalytic activity of Pd/MnO2 nanocomposite was used as a heterogeneous catalyst for the one‐pot synthesis of 5‐substituted 1H‐tetrazoles from aryl halides containing various electron‐donating or electron‐withdrawing groups in the presence of K 4 [Fe (CN) 6 ] as non‐toxic cyanide source and sodium azide. The products were obtained in good yields via a simple methodology and easy work‐up. The nanocatalyst can be recycled and reused several times with no remarkable loss of activity.  相似文献   

18.
This paper reports the green and in situ preparation of Fe3O4@SiO2‐Ag magnetic nanocatalyst synthesized using safflower (Carthamus tinctorius L.) flower extract without the addition of any stabilizers or surfactants. The catalytic performance of the resulting nanocatalyst was examined for the reduction of 4‐nitrophenol (4‐NP), methylene blue (MB) and methyl orange (MO) in an environment‐friendly medium at room temperature. The main factors such as pH, temperature and amount of catalyst influencing the nanocatalyst performance were studied. The apparent rate constants for 4‐NP, MO and MB reduction were calculated, being 0.756 min?1, 0.064 s?1 and 0.09 s?1, respectively. The catalyst was recovered using an external magnet and reused several times with negligible loss of catalytic activity. The as‐synthesized nanoparticles were characterized using powder X‐ray diffraction, transmission electron microscopy, UV–visible, Fourier transform infrared and inductively coupled plasma atomic emission spectroscopies, dynamic light scattering and vibrating sample magnetometry.  相似文献   

19.
We report a systematic investigation on the structural and electronic effects of carbon‐supported PtxPd1?x bimetallic nanoparticles on the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acid electrolyte. PtxPd1?x/C nanocatalysts with various Pt/Pd atomic ratios (x=0.25, 0.5, and 0.75) were synthesized by using a borohydride‐reduction method. Rotating‐disk electrode measurements revealed that the Pt3Pd1/C nanocatalyst has a synergistic effect on the ORR, showing 50 % enhancement, and an antagonistic effect on the MOR, showing 90 % reduction, relative to JM 20 Pt/C on a mass basis. The extent of alloying and Pt d‐band vacancies of the PtxPd1?x/C nanocatalysts were explored by extended X‐ray absorption fine‐structure spectroscopy (EXAFS) and X‐ray absorption near‐edge structure spectroscopy (XANES). The structure–activity relationship indicates that ORR activity and methanol tolerance of the nanocatalysts strongly depend on their extent of alloying and d‐band vacancies. The optimal composition for enhanced ORR activity is Pt3Pd1/C, with high extent of alloying and low Pt d‐band vacancies, owing to favorable O? O scission and inhibited formation of oxygenated intermediates. MOR activity also shows structure dependence. For example, Pt1Pd3/C with Ptrich?corePdrich?shell structure possesses lower MOR activity than the Pt3Pd1/C nanocatalyst with random alloy structure. Herein, extent of alloying and d‐band vacancies reveal new insights into the synergistic and antagonistic effects of the PtxPd1?x/C nanocatalysts on surface reactivity.  相似文献   

20.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号