首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photodynamic action of a plasma membrane-specific photosensitizer sulphonated aluminium phthalocyanine (SALPC) has been found to regulate cellular signalling pathways. The present study aimed to investigate whether SALPC photodynamic action modulates the structure of plasma membrane proteins, and as control, of model proteins. To check the photodynamic effect, intrinsic fluorescence of model proteins bovine serum albumin (BSA), phospholipase A2 (PLA2), and calmodulin were monitored continuously during photodynamic action (SALPC 1 microM, light 14,000 1x at > 580 nm). Significant decrease in fluorescence intensity was observed in BSA and PLA2, whereas the fluorescence of calmodulin was not affected. Confirming a major change in protein structure, difference IR spectrum revealed a significant downward deflection after photodynamic action in both BSA and in pancreatic acinar cells, whereas SALPC alone or light illumination alone resulted in no major deflection. Quantitative FTIR analysis indicated that in BSA, photodynamic action decreased the content of alpha-helix, increased the content of beta-turn and random structures, whereas beta-sheet remained the same; in freshly isolated rat pancreatic acini, photodynamic action decreased the content of alpha-helix and beta-sheet, increased the content of 1-turn and random structures. Taken together the fact that under the present experimental conditions SALPC mainly localized at the plasma membrane, it is concluded that SALPC photodynamic action directly modulates plasma membrane protein structure.  相似文献   

2.
Effect of varying extracellular pH on mode of cell death induced by photodynamic action of chlorin p6 was investigated in human colon carcinoma (Colo-205) cells. At an extracellular pH of 7.4, compared to cells treated with chlorin p6 in dark, the photodynamically treated cells showed reduction in mitochondrial membrane potential, an increase in ADP/ATP ratio (1:2) and a large percentage of cells with chromatin condensation. In contrast, when photodynamic treatment and post irradiation incubation was carried out in acidic medium (pH 6.5), total loss of mitochondrial membrane potential, a marked increase in ADP/ATP ratio (1:33) and increased damage to plasma membrane were observed. Further, cells subjected to photodynamic treatment in a medium of pH 7.4 showed twofold increase in caspase-3 activity as compared to photodynamic treatment at pH 6.5. These results suggest that chlorin p6 mediated photodynamic action induces apoptotic cell death when extracellular pH is 7.4 whereas necrosis is more predominant under condition when extracellular pH is 6.5.  相似文献   

3.
Abstract The plasma membrane has been implicated as a critical target of photodynamic action on cells. We have observed that the photosensitization of human cerebral glioma (U-87 MG) cells by hematoporphyrin derivative (HpD) causes a large increase in intracellular calcium [Ca2+]. This increase in [Ca2+]i was solely due to the influx of extracellular Ca2+ through the plasma membrane and showed a dependence on HpD concentration, light dose and concentration of calcium in the extracellular medium. The magnitude of the Ca2+ influx decreased with increasing postirradiation time, which suggests that the cell membrane partially recovers from the photodynamic injury. The photoinduced Ca2+ influx was inhibited by the Ca2+ channel blocker diltiazem and the reducing agent dithioerythritol. These findings are discussed in terms of possible activation of a Ca2+ channel as a result of photosensitization.  相似文献   

4.
Abstract— The photodynamic effects of methylene blue (MB) on wild-type and mutant strains of Paramecium Were studied. From measurements of survival and cell motility under the continuous application of light in the presence of MB, the mutant strains remained alive for about three times longer than the wild-type strain. Although the resting potential of the mutant cells was similar to that of wild-type cells, the continuous photodynamic action shifted the membrane potentials of the mutant and wild-type cells to a depolarized level and a hyperpolarized level, respectively, from that before light application. Under voltage clamping, the mutant cells reduced not only the outward current elicited by the photodynamic action but also the outward tail current elicited by the preceding pulse of hyperpolarization. We conclude that the mutant strain is defective in the activation of Ca2+-dependent K+channels. This defect might cause a reduction in the Ca2+influx because of the suppression of the membrane hyperpolarization, which results in the elongation of survival time under the photodynamic action.  相似文献   

5.
Abstract— The positively charged photosensitizer toluidine blue (TB) can induce loss of clonogenicity in Kluyveromyces marxianus. Previous studies have revealed that, as a consequence of the localization of this dye at the cell surface, photodynamic action results in extensive damage at the level of the plasma membrane. In this paper, a study is reported on the effect of photodynamic treatment with TB on intracellular enzymes. It is shown that treatment with TB and light resulted in the inhibition of alcohol dehydrogenase, cytochrome c oxidase, glyceraldehyde-3-phosphate dehydrogenase and hexokinase. Photodynamic treatment also lowered the ATP levels. The ATP levels could be partially restored in the presence of glucose but not with ethanol. Toluidine blue binding experiments revealed that photodynamic treatment caused a rapid increase in the amount of cell-associated dye. Moreover, it also appeared that this treatment decreased the binding of TB to the cell surface. It is concluded that TB enters the cell during the first minutes of illumination, whereafter intracellular enzymes are inactivated. The data indicate that photodynamic damage of intracellular sites contributes to the loss of viability.  相似文献   

6.
Fluorescence spectra, fluorescence decay kinetics, photobleaching kinetics and photodynamic efficacy of protoporphyrin IX (PP) were investigated in endothelial cells in vitro after different incubation times. Fluorescence spectra and photobleaching kinetics were determined during total internal reflection (TIR) illumination or epiillumination. Because penetration depth of the excitation light during TIR illumination was limited to about 100 nm, plasma membrane-associated PP was almost selectively examined. Spectra obtained by TIR fluorescence spectroscopy (FS) showed a very low background, where-as spectra obtained by epi-illumination exhibited considerable background by autofluorescence and scattered light. For photobleaching kinetics during TIR illumination after 1 h or 24 h incubation, a biexponential fluorescence decrease was observed with a rapidly and a slowly bleaching portion. After 1 h incubation, the rapidly bleaching portion was the predominant fraction, whereas after 24 h incubation comparable relative amounts of the rapidly and slowly bleaching portion were determined. The rapidly and slowly bleaching portion were assigned to PP monomers and aggregated species in close vicinity to the plasma membrane. Fluorescence decay measurements after epi-illumination support the decrease of PP monomers within the whole cell with increasing incubation time. In contrast to TIR illumination, photobleaching of PP during epi-illumination was characterized by slow monoexponential fluorescence decrease after 1 h or 24 h incubation. Photodynamic efficacy of PP using epi-illumination was found to depend strongly on incubation time. Considerable cell inactivation was determined for short incubation times (1 h or 3 h), whereas photodynamic efficacy was diminished for longer incubation times. Reduced photodynamic efficacy after long incubation times was assigned to the lower amount of photodynamically active monomers determined close to the plasma membrane as well as within the whole cell. In conclusion, TIRFS measurements are suggested to be an appropriate tool for the examination of the plasma membrane-associated photosensitizer fraction in living cells.  相似文献   

7.
Abstract. Previous work showed that the bacterium Micrococcus roseus is killed by photodynamic action when an exogenous photosensitizer is present, but when a photosensitizer is not added the organism survives long exposure to high intensity (22,000ft-c, 348 J/s/m2) white light. Experiments designed to demonstrate the presence of a mechanism to repair damage caused by photodynamic action failed to reveal such a mechanism. However, the organism was killed by light of a very high intensity (32,000ft-c, 506 J/s/m2) in the absence of added photosensitizer, indicating that cells have an effective endogenous photosensitizer(s). Two carotenoid-deficient mutants were killed via photodynamic action more rapidly than the fully pigmented wild-type in the presence or absence of an exogenous photosensitizer. Thus, resistance of M. roseus to photodynamic action is not due to a repair mechanism, nor to lack of an effective endogenous photosensitizer, but to the protective action of carotenoid pigments.  相似文献   

8.
Photodynamic lipid peroxidation in biological systems   总被引:12,自引:0,他引:12  
Oxidative degradation of cell membrane lipids in the presence of molecular oxygen, a sensitizing agent and exciting light is termed photodynamic lipid peroxidation (photoperoxidation). Like other types of lipid peroxidation, photoperoxidation is detrimental to membrane structure and function, and could play a role in many of the toxic as well as therapeutic effects of photodynamic action. Recent advances in our understanding of photoperoxidation and its biomedical implications are reviewed in this article. Specific areas of interest include (a) reaction mechanisms; (b) methods of detection and quantitation; and (c) cellular defenses (enzymatic and non-enzymatic).  相似文献   

9.
Results from a variety of experiments indicate that photodynamic damage to E. coli treated with the hydrophobic photosensitizer acridine plus near-UV light involves both cell membranes and DNA. Split-dose survival experiments with various E. coli mutants reveal that cells defective in rec A, uvr A, or pol A functions are all capable of recovery from photodynamic damage. Alkaline sucrose gradient analysis of DNA from control and treated cells revealed that acridine plus near-UV light treatment converts normal DNA into a more slowly sedimenting form. However, the normal DNA sedimentation properties are not restored under conditions where split-dose recovery is effective. Several lines of evidence suggest that membrane damage may be important in the inactivation of cells by acridine plus near-UV light. These include (a) a strong dependence of sensitivity on the fatty acid composition of the membranes; (b) a strong dependence of sensitivity on the osmolarity of the external medium; and (c) the extreme sensitivity of an E. coli mutant having a defect in its outer membrane barrier properties. Direct evidence that acridine plus near-UV light damages cell membranes was provided by the observations that (a) the plasma membrane becomes permeable to o-nitrophenyl-ß-D-galactopyranoside and (b) the outer membrane becomes permeable to lysozyme after treatment. A notable result was that cells previously sensitized to lysozyme by exposure to acridine plus near-UV light lose that sensitivity upon subsequent incubation. This strongly suggests that E. coli cells are capable of repairing damage localized in the outer membrane.  相似文献   

10.
The photodynamic effect of a photoproduct of protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (ALA) was investigated in WiDr cells, a human adenocarcinoma cell line. The fluorescence excitation and emission spectra of PpIX and the photoproduct were measured. After 1, 3 or 5 min exposure of the ALA-incubated cells to 140 mW/cm2 light at 635 nm, the photoproduct — the chlorin photoprotoporphyrin (Ppp), had an emission band around 670 nm. The Ppp excitation peak at 670 nm is well separated from the PpIX peak at 635 nm. The outcome of photodynamic therapy (PDT) was determined by measuring intracellular fluorescence intensity of propidium iodide (PI) 2 h following PDT and methylene blue (MB) staining 24 h following PDT. A significant increase in the fluorescence intensity of PI was noted when the ALA-loaded cells were exposed to 670 nm light after exposure to 635 nm, indicating enhanced cell membrane inactivation induced by the photodynamic action of the photoproduct. However, the fraction of the cells that survived following the same treatment as measured by MB staining was not significantly affected based on an analysis of variance. The fluorescence of PpIX decayed significantly during 635 nm light exposure. Exposure to light at 670 nm does not lead to any photodegradation of PpIX. The fluorescence of Ppp was bleached during 670 nm light exposure. Exposure of Ppp at 670 nm gives no PpIX back. Thus, the phototransformation of PpIX to Ppp is probably not a reversible process.  相似文献   

11.
Targeted photodynamic therapy (PDT) combined with image-guided surgical resection is a promising strategy for precision cancer treatment. Prostate-specific membrane antigen (PSMA) is an attractive target due to its pronounced overexpression in a variety of tumors, most notably in prostate cancer. Recently, we reported a pyropheophorbide-based PSMA-targeted agent, which exhibited long plasma circulation time and effective tumor accumulation. To further advance PSMA-targeted photodynamic therapy by harvesting tissue-penetrating properties of the NIR light, we developed a bacteriochlorophyll-based PSMA-targeted photosensitizer (BPP), consisting of three building blocks: (1) a PSMA-affinity ligand, (2) a peptide linker to prolong plasma circulation time and (3) a bacteriochlorophyll photosensitizer for NIR fluorescence imaging and photodynamic therapy (Qy absorption maximum at 750 nm). BPP exhibited excellent PSMA-targeting selectivity in both subcutaneous and orthotopic mouse models. The nine D-peptide linker in BPP structure prolonged its plasma circulation time (12.65 h). Favorable pharmacokinetic properties combined with excellent targeting selectivity enabled effective BPP tumor accumulation, which led to effective PDT in a subcutaneous prostate adenocarcinoma mouse model. Overall, bright NIR fluorescence of BPP enables effective image guidance for surgical resection, while the combination of its targeting capabilities and PDT activity allows for potent and precise image-guided photodynamic treatment of PSMA-expressing tumors.  相似文献   

12.
We recently reported that variations in cellular phototoxicity among a series of alkynyl-substituted zinc trisulfophthalocyanines (ZnPcS3Cn) correlates with their hydrophobicity, with the most amphiphilic derivatives showing the highest cell uptake and phototoxicity. In this study we address the role of the plasma membrane in the photodynamic response as it relates to the overall hydrophobicity of the photosensitizer. The membrane tracker dye 1-[4(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), which is incorporated into plasma membranes by endocytosis, was used to establish plasma membrane uptake by EMT-6 cells of the ZnPcS3C, by colocalization, and TMA-DPH membrane uptake rates after photodynamic therapy were used to quantify membrane damage. TMA-DPH colocalization patterns show plasma membrane uptake of the photosensitizers after short 1 h incubation periods. TMA-DPH plasma membrane uptake rates after illumination of the photosensitizer-treated cells show a parabolic relationship with photosensitizer hydrophobicity that correlates well with the phototoxicity of the ZnPcS3C,. After a 1 h incubation period, overall phototoxicity correlates closely with the postillumination rate of TMA-DPH incorporation into the cell membrane, suggesting a major role of plasma membrane damage in the overall PDT effect. In contrast, after a 24 h incubation, phototoxicity shows a stronger but imperfect correlation with total cellular photosensitizer uptake rather than TMA-DPH membrane uptake, suggesting a partial shift in the cellular damage responsible for photosensitization from the plasma membrane to intracellular targets. We conclude that plasma membrane localization of the amphiphilic ZnPcS3C6-C9 is a major factor in their overall photodynamic activity.  相似文献   

13.
In order, understanding the antimicrobial action of photodynamic therapy and how this technique can contribute to its application in the control of pathogens. The objective of the study was to employ a proteomic approach to investigate the protein profile of Staphylococcus aureus after antimicrobial photodynamic therapy mediated by rose bengal (RB-aPDT). S. aureus was treated with RB (10 nmoL L−1) and illuminated with green LED (0.17 J cm−2) for cell viability evaluation. Afterward, proteomic analysis was employed for protein identification and bioinformatic tools to classify the differentially expressed proteins. The reduction in S. aureus after photoinactivation was ~2.5 log CFU mL−1. A total of 12 proteins (four up-regulated and eight down-regulated) correspond exclusively to alteration by RB-aPDT. Functionally, these proteins are distributed in protein binding, structural constituent of ribosome, proton transmembrane transporter activity and ATPase activity. The effects of photodamage include alterations of levels of several proteins resulting in an activated stress response, altered membrane potential and effects on energy metabolism. These 12 proteins required the presence of both light and RB suggesting a unique response to photodynamic effects. The information about this technique contributes valuable insights into bacterial mechanisms and the mode of action of photodynamic therapy.  相似文献   

14.
Abstract —Direct photoinactivation by UV light of bovine carbonic anhydrase, as well as its photosensitization by N -formyl-kynurenine, a tryptophan photooxidation product, have been investigated. In the presence of oxygen both methods lead to similar results: the enzyme loses its activity, the tryptophanyl, histidyl and, to a lesser extent, tyrosyl residues being destroyed. In nitrogen-saturated solutions, a dramatic drop is observed in the photoinacitivation yield under the direct action of ultraviolet light, whereas histidyl residues remain intact. Evidence indicates an internal photodynamic action of N -formyl-kynurenine in the protein core produced by the UV photooxidation of tryptophanyl residues. Photoinactivation of oxygenated enzyme solutions by external and internal photodynamic action correlates with histidyl residue destruction via singlet oxygen. The possible importance of the photodynamic ability of N -formyl-kynurenine in the photochemistry of proteins, DNA, and cells is discussed.  相似文献   

15.
Abstract— It was shown that the cationic fluorescence probe rhodamine 123 accumulates in mitochondria of murine L929 fibroblasts and Chinese hamster ovary Kl epithelial cells due to the driving force of both plasma membrane and mitochondrial membrane potentials. Photodynamic treatment of L929 cells with hematoporphyrin derivative resulted in an increased uptake of rhodamine 123 and a diminished uptake of 1,1,3,3,3',3'-hexamethylindocarbocyanine iodide. This indicates a considerably increased mitochondrial membrane potential, which most likely is the result of a direct or secondary inhibition of the ATP-synthetase, and a decreased plasma membrane potential. The oxygen consumption rate and the ATP level decreased due to photodynamic treatment. Post-incubation of L929 cells subsequent to photodynamic treatment revealed that the uptake of rhodamine 123. the ATP content and the oxygen consumption rate were restored. For all parameters similar results were obtained with CHO-K1 cells, with the exception that during post-incubation the intracellular ATP content remained at the level reached after illumination. These results indicate that photodynamically induced disturbance of mitochondrial functions and the ATP level are not crucial for the loss of clonogenicity of L929 cells. In CHO-K1 cells however, the continuously lowered ATP level may have detrimental consequences for cell survival. The photodynamic stimulation of the rhodamine 123 uptake may be a rather general phenomenon. Because rhodamine 123 exhibits a much higher toxicity towards carcinoma cells than towards other cells, a synergistic interaction between this drug and photodynamic therapy (PDT) may be anticipated, if PDT also stimulates mitochondrial rhodamine 123 accumulation in carcinoma in vivo.  相似文献   

16.
9-Acetoxy-2,7,12,17-tetrakis-(beta-methoxyethyl)-porphycene (ATMPn) is a promising new photosensitizer characterized by high absorption around 640 nm and high singlet oxygen yield. To study the mechanism of action in vitro we have investigated uptake, intracellular localization, cell survival and ultrastructural changes following photodynamic treatment in human cell lines derived from the skin (SCL1 and SCL2, squamous cell carcinoma; HaCaT keratinocytes; N1 fibroblasts). Using flow cytometry we have determined the cellular fluorescence as a marker for the uptake of ATMPn after incubation for 60 min. Co-staining with ATMPn and fluorescent dyes specific for cell organelles reveals an intracellular localization of ATMPn in lysosomes. Following irradiation using an incoherent light source (580-740 nm) and a light fluence of 24 J cm-2, phototoxicity is determined by means of the 3-4.5 dimethylthiazol-2,5 diphenyl tetrazolium bromide (MTT) assay. For all cell lines ATMPn concentrations above 15 nM yield a significant phototoxic effect. The 50% effective concentration, EC50, for SCL1 cells is 11.2 +/- 2.9 nM ATMPn. ATMPn uptake and phototoxicity are more effective for HaCaT and SCL1 as compared to SCL2 and N1 cells. Growth curves confirmed the results of the MTT assay. Because of the high lysosomal accumulation of ATMPn, already low photosensitizer concentrations without dark toxicity yield a high photodynamic effect. Immunofluorescence and electron microscopy reveal damage to tonofilaments, plasma membrane and mitochondria, indicating a mechanism unrelated to apoptosis. A dose yielding complete cell killing, as needed for oncological indications, might lead to necrosis, whereas lower sub-lethal doses result in induction of apoptosis.  相似文献   

17.
Abstract— Stentorin acts as the photoreceptor for the step-up photophobic and negative phototactic responses in Stentor coeruleus . The chromophore of stentorin appears to be hypericin which is linked to apoprotein. In addition to the photomovement responses of the organism, S. coeruleus was found to be photodynamically sensitive to light absorbed by the hypericin chromophore, as the apparent action spectrum for the photodynamic killing matches the absorption spectrum of stentorin. The protective effect of β-carotene and crocetin on the photodynamic killing of S. coeruleus suggests that singlet oxygen generated by the stentorin-sensitization plays an important role, according to the so-called Type II mechanism of photosensitization. The generation of singlet oxygen via hypericin triplet was confirmed by in vitro photooxidation of tryptophan as a substrate. The photodynamic killing was more effective in deuterium oxide than in H2O in both the photosensitization by stentorin (endogenous) and added hypericin (exogenous). These results are consistent with the involvement of singlet oxygen in the photodynamic killing of S. coeruleus .  相似文献   

18.
Standard in vitro analyses determining the activity of different compounds included in the chemotherapy of colon cancer are currently insufficient. New ideas, such as photodynamic therapy (PDT), may bring tangible benefits. The aim of this study was to show that the biological activity of selected free-base and manganese (III) metallated porphyrins differs in the limitation of colon cancer cell growth in vitro. White light irradiation was also hypothesized to initiate a photodynamic effect on tested porphyrins. Manganese porphyrin (>1 μM) significantly decreased the viability of the colon tumor and normal colon epithelial cells, both in light/lack of light conditions, while decreasing a free-base porphyrin after only 3 min of white light irradiation. Both porphyrins interacted with cytostatics in an antagonistic manner. The manganese porphyrin mainly induced apoptosis and necrosis in the tumor, and apoptosis in the normal cells, regardless of light exposure conditions. The free-base porphyrin conducted mainly apoptosis and autophagy. Normal and tumor cells released low levels of IL-1β and IL-10. Tumor cells released a low level of IL-6. Light conditions and porphyrins were influenced at the cytokine level. Tested manganese (III) metallated and free-base porphyrins differ in their activity against human colon cancer cells. The first showed no photodynamic, but a toxic activity, whereas the second expressed high photodynamic action. White light use may induce a photodynamic effect associated with porphyrins.  相似文献   

19.
The photodynamic effects of α-terthienyl (αT) in near-UV light (UV-A) on Escherichia coli showed close agreement with the light absorption of αT at different wavelengths suggesting that αT is the primary absorbing molecule responsible for the photosensitized reaction. Studies with DNA repair deficient mutants of E. coli indicated that the bactericidal action of αT/UV-A was not mediated by DNA damage, in direct contrast to the well-known photosensitizer, 8-methoxypsoralen. By using a closed borosilicate glass reaction vessel and various gas mixtures, it was demonstrated that photosensitization of both E. coli and a more resistant bacterium, Pseudomonas aeruginosa , was absolutely dependent on the presence of oxygen. The rate of killing by αT/UV-A showed a rather small dependence on preincubation temperatures, with quite rapid killing at 5°C, suggesting that the movement of αT across the cytoplasmic membrane of E. coli is not the rate limiting step in killing and perhaps is not even necessary for killing. Sodium dodecyl sulphate-polyacrylamide gels of cell membrane proteins after 15 and 30min of treatment with αT/UV-A showed substantial random crosslinking of these proteins. The results taken overall suggest that αT is a photodynamic photosensitizer which exerts its primary effect at the level of the cytoplasmic membrane.  相似文献   

20.
The phthalocyanines have recently been suggested as one of most effective possible sensitizers for photodynamic therapy and the blood viral inactivation. The further characterisation of the mechanism of human red blood cell lysis and membrane alterations upon photodynamic treatment in the presence of Zn-phthalocyanine was the aim of this study. It was found that there were (2.7+/-0.4).10(7) dye binding sites per red blood cell with the association constant equal to (1.4+/-0.3).10(4) M(-1). Two types of the photosensitized haemolysis: haemolysis during irradiation ("light" haemolysis) and post-irradiation haemolysis ("dark" haemolysis) were studied. The erythrocyte membrane hyperpolarisation, membrane fluidisation and cell swelling preceded the "light" haemolysis. The modification of the erythrocyte membrane band 3 protein by DIDS (an inhibitor of anion exchange) increased the rate of the "light" haemolysis. The rate of "dark" haemolysis was higher and that of "light" haemolysis was lower in potassium media in comparison to sodium ones. The rates of photohaemolysis depended on the erythrocyte membrane potential: a decrease of membrane potential inhibited both types of haemolysis. The cell shrinkage in the presence of sucrose (up to 15 mM) inhibited the "dark" haemolysis but significantly increased the "light" haemolysis. Oxidation of intracellular oxyHb to metHb by nitrite, which drastically decreases intracellular oxygen concentration, as well as GSH concentration, inhibited the rate of the "light" haemolysis. The results allow for the conclusion that the mechanism of photochemical ("light") haemolysis is not of a colloid-osmotical type, in contrast to the post-irradiation ("dark") haemolysis. The photochemical oxidation or denaturation of band 3 protein plays a significant role in the formation of haemolytic holes. The membrane lipid peroxidation, as well as glutathione oxidation, does not participate in the process of photosensitized haemolysis. From the inhibition of "dark" haemolysis by sucrose the apparent pore radius was estimated to be about 1.1 nm. The pores appear to be transient short-lived ones, the average pore number per cell was 0.02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号