首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A plastid mRNA (5 × 105 mol wt) appears as a burst 3 h after white light greening of steady state dark grown plants of Spirodela oligorrhiza. In this species, chlorophyll synthesis begins after 12 h. The light requirement is different from the pulse of far-red reversible red light required to abolish the lag of chlorophyll synthesis in many species, including Spirodela. Continuous high energy far-red is not stimulatory. When the illumination is not continued throughout the time of incorporation, the stimulation is minimal. Low energy blue and red light are stimulatory, and green and far-red light are ineffectual. Blue light was > 5 times as effective as red light at many dose levels. Illumination with 3 × 1017 quanta/m2/s (50pEm/cm2/s) blue light at 476 nm gave about half maximum stimulation.  相似文献   

2.
Abstract— Epidermal cells of Vallisneria gigantea have a large central vacuole which is surrounded by a thin layer of cytoplasm. The chloroplasts are distributed over all six cytoplasmic layers of an approximate cuboid. In low-intensity light, the accumulation of chloroplasts in the side facing the outer periclinal wall (the P side) continues for several hours. Red light (650 nm) shows the highest effect and induces such an accumulation even at a fluence rate of only 0.02 W/m2. In response to high-intensity light, the chloroplasts move to the sides that face the anticlinal walls (the A sides) within a few tens of minutes. Blue light (450 nm) is most effective in inducing this movement. At a fluence rate of 1.51 W/m2, the reaction is induced in only half of the specimens. Neither red nor blue light can induce any orientation movement in the presence of 100 μg/ml of cytochalasin B. The chloroplast movements in the P side have been examined with a time-lapse video system. When cells, in which the chloroplast accumulation has been completed after red-light irradiation, are subsequently irradiated with blue light, the rapid movement of chloroplasts to A sides is induced. However, a considerable number of chloroplasts remains in the center of the P side. The same is true of cells in which the chloroplasts have not accumulated in the P side because of cytochalasin B treatment during red-light irradiation, when such cells are irradiated with blue light after removal of the drug. Some anchoring mechanism seems to work in low-intensity light to render the chloroplasts immobile in the P side.  相似文献   

3.
Abstract— The action spectra for violaxanthin de-epoxidation and zeaxanthin epoxidation in New Zealand spinach leaf segments, Tetragonia expansa, were determined at equal incident quanta of 2·0 × 1015 quanta cm-2 sec-1. Precise action spectra were not obtained due to variable leaf activity. The de-epoxidation action spectrum had major peaks at approximately 480 and 648 nm. Blue light was slightly more effective than red light and little activity was observed beyond 700 nm. The epoxidation action spectrum showed major peaks at around 440 and 670 nm. Blue light was more effective than red light and light beyond 700 nm showed definite activity. The net result of de-epoxidation and epoxidation is a cyclic scheme, the violaxanthin cycle, which consumes O2 and photoproducts. The action spectra indicate that the violaxanthin cycle is more active in blue than in red light and therefore could account for O2 uptake stimulated by blue light. However, the violaxanthin cycle is not the pathway for O2 uptake by photosynthetic system 1. It was suggested that the violaxanthin cycle may function as a pathway for the consumption of excess photoproducts generated in blue light or the conversion of these photo-products to other forms of energy.  相似文献   

4.
Abstract— Photogeotropic equilibrium angles were measured for Phycomyces blakesleeanus wild type firstly by means of dichromatic fluence rate response curves using simultaneous irradiation with near threshold 450 nm reference light (constant at 1.2 × 10?8 W m?2) and variable fluence rates of test light (498–630 nm) from the same side. These curves showed minima for test light fluence rates that were close to the photogeotropic threshold for these wavelengths. Secondly, the time course of this inhibitory effect was studied with both the inductive reference 450 nm light (2 × 10?-7 W m?2) and the test light (606 or 450 nm) given as light pulses of 2 s duration (2 s light/48 s dark periods for 6 h). The dark period between the onset of the inductive reference light and test light pulses was varied between 0 and 48 s. No inhibitory effects were observed for simultaneous pulses; however, inhibitory effects were demonstrated for delay times of 2 s and 20 s for 606 nm as well as 450 nm test light. If the test light pulses were given immediately before the inductive reference light, only 606 nm test light was effective in producing a significant inhibitory effect. The results are discussed with regard to a multichromophoric photoreceptor system and to the wavelength dependence of the effects observed. The data and conclusions favor a photoreceptor system with at least two separate chromophoric absorptions of the blue light receptor type, one acting positively, the other acting inhibitorily, and at least one other photoreceptor of presumably minor influence.  相似文献   

5.
REGULATION OF CHLOROPLAST DEVELOPMENT BY RED AND BLUE LIGHT   总被引:3,自引:0,他引:3  
There are specific differences between red and blue light greening of etiolated seedlings of Hordevm vulgare L. Blue light results in a different prenyl lipid composition of chloroplast as compared to red light of equal quanta density. This is documented by a much higher prenylquinone content, higher chlorophyll a/b ratios, and lower values for the ratio xanthophylls to carotenes (x/c). The photosynthetic activity of “blue light” chloroplasts (Hill reaction) is higher than that of “red light” chloroplasts. These differences in prenylquinone composition and Hill-activity are associated with a different ultrastructure of chloroplasts. “Red light” chloroplasts exhibit a much higher grana content than “blue light” chloroplasts. The difference in thylakoid composition, photosynthetic activity and chloroplast structure found between blue and red light greening are similar to those found between sun and shade leaves and those between plants grown under high and low light intensities.  相似文献   

6.
7.
Poly(phenylisopropenylketone (PPIK) and copolymers of PIK and methylmethacrylate (MMA) or styrene (St) were irradiated in benzene solution at 30° with 313 nm light (stationary irradiations) or with 347 nm light (flash photolysis experiments). Homo PPIK undergoes main chain degradation (β-scission) with ø(S) ≈ 0.05. The quantum yield for α-scission is ø(α) = 0.3. For copolymers of MMA and PIK (1 to 15 mol%), ø(S) is 0.04 independent of the copolymer composition. With copolymers of St and PIK, ø(S) was found to increase with decreasing PIK content and to approach 0.15 for very small PIK contents. The flash photolysis experiments showed: (a) the carbonyl triplet decay rate constant kT(6 × 106 sec?1) for CP-MMA-PIK samples is independent of copolymer composition but is lower than for homo PPIK (1 × 107 sec?1). In CP-St-PIK samples kT decreases with decreasing PIK content [from 8 × 106 sec?1 (12 mol% PIK) to 3 × 106 sec?1 (1 mol% PIK)]; (b) the transient spectra of triplet decay products indicate the formation of benzoyl radicals in the cases of PPIK and CP-MMA-PIK, and the formation of various different species in the case of CP-St-PIK.The results are consistent with the following concept. In homo PPIK and CP-MMA-PIK, α-scission (Norrish type I) is the dominant chemical route of triplet deactivation. In CP-St-PIK, however, type II processes become more and more important as the PIK content decreases.  相似文献   

8.
Plasmid pTZ18R and calf thymus DNA in aerated neutral aqueous solution were irradiated by continuous 254 nm light. The quantum yields are φssb= 4.0 × 10-5 and φdsb= 1.4 × 10-6 for single- and double-strand break formation, respectively, φbr= 2.3 × 10-5 for base release, φdn= 2.1 × 10-3 for destruction of nucleotides, and φicl×φlds× 1 × 10-6 for interstrand cross-links and locally denatured sites, respectively. The presence of Tris-HCI/ ethylenediaminetetraacetic acid (10:1, pH 7.5) buffer strongly reduces φssb, The corresponding φ values, obtained on employing pulsed 193 nm laser irradiation, are much larger than those using λirr, = 254 nm. This is ascribed to a contribution of chemical reactions induced by photoionization, which is absent for 254 nm irradiation. The quantum yields of inactivation of plasmid DNA (λirr= 254 nm) were measured by transformation of the Escherichia coli strains AB1157 (wild type), φina(1157) = 1.6 × 10-4, AB1886 (uvr-), φina(1886) = 4.2 × 10-4, AB2463 (rec-), φina(2463) = 4.1 × 10-4 and AB2480 (uvr- rec-), φina(2480) = 3.1 × 10-3. The quantum yields of inactivation of plasmid DNA are compared with those of the four E. coli strains (denoted as chromosomal DNA inactivation) obtained from the literature. The results for E. coli strain AB2480 show that the chromosomal DNA and the plasmid DNA are both inactivated by a single pyrimidine photodimer per genome. With the E. coli strain AB2463 inactivation of plasmid and chromosomal DNA is the same for the same total damage per genome and is ~ 10 times smaller than for AB2480. This is explained by photodimer repair in chromosomal and plasmid DNA and by the absence of dsb repair in both cases. In the repair wild-type strain AB1157, inactivation of the plasmid DNA is roughly 100 times higher than that of the chromosomal DNA. We postulate that a portion of this difference is due to repair of dsb by the recA system in chromosomal DNA and that such repair does not take place in the plasmid DNA. The biological results from 254 nm irradiation are compared with those from 193 nm laser irradiation.  相似文献   

9.
《Analytical letters》2012,45(4):263-272
Abstract

The utility of hydroxy naphthol blue (HNB) as a spectrophotometric and fluorometric reagent for the uranyl ion has been investigated. In phthalate buffer (at a pH of 4.0), UO2 2+ forms a brown complex of low absorptivity with the red form of HNB. By following the decrease in HNB absorbance at 530 nm (which has ε = 4.1 × 103) uranyl ion can be determined to levels as low as 1.1 × 10?6 M (0.30 μg/ml). HNB also emits at 460 nm when excited at 365 nm at these pH values, while the UO2 2+ complex exhibits greatly reduced emission. Examination of the quenching of HNB emission by UO2 2+ allows the determination of uranyl ion to levels as low as 3.2 × 10?6 M (0.86 μg/ml). A 1:1 type complex was formed between UO2 2+ and HNB, and a formation constant of 9.77 × 103 (log K1 = 3.99) was measured for the complex.  相似文献   

10.
Photoinhibition of the light-regulated key enzymes of the photosynthetic carbon reduction (PCR) cycle was investigated using chloroplasts isolated from spinach leaves. Light quality dependence of the light-induced activity change (activation or inactivation) of key PCR enzymes in situ demonstrated that, while light activation is promoted mainly by red light (Λ.> 600 nm), inactivation takes place largely in the region of blue light (Λ < 500 nm). Inactivation was suppressed by a lipid soluble singlet oxygen (1O2,1Δg) quencher. When “stromal protein” was subjected to a severe photoinhibitory treatment, no significant loss of activity was observed for any PCR enzyme assayed. However, the inclusion of thylakoids in the photolysis system resulted in a substantial inactivation of the enzymes; this inactivation was significantly diminished in the presence of imidazole and enhanced to some extent by a partial deuteration of medium. In contrast, superoxide dismutase did not exert any effect. The blue light-induced inactivation of the enzymes was remarkably decreased in the presence of thylakoids whose Fe-S centers were destroyed. The results obtained in this study suggest that photoinactivation of the PCR enzymes in situ is mediated mainly by 1O2, which is photoproduced primarily by the Fe-S centers of thylakoids and diffuses into the stroma.  相似文献   

11.
Wild-type Chinese hamster cells CHO Kl and their radiosensitive mutant xrs5 were irradiated at 308 nm, using light pulses of a XeCl excimer laser with total energy fluences of 0.1 kj/m2 to 4.08 kj/m2. Chromosome-type and chromatid-type chromosome aberrations have been observed at pulse irradiances of 2.5 × 107 W/m2 and 1.7 × 108 W/m2, indicating that in mammalian cells DNA double-strand breaks occur already in this irradiance range. The results obtained with laser irradiation are compared with X-ray irradiation.  相似文献   

12.
本文主要用分光光度法研究[Ir(NO)Cl_5]-与二苯胺的反应。在6M盐酸溶液中,生成1:1及2:1配合物,吸收峰分别在515nm及571nm,摩尔吸光系数为2.3×10~4及3.8×10~4。实验表明,新配合物是由[Ir(NO)Cl_5]-的NO~+基在二苯胺氨基的对位发生亲电取代反应而生成。  相似文献   

13.
We report measurements of the excitation and ionization of dense lithium vapor irradiated byCW dye laser light scanning the 22 P?32 D lithium atomic transition at 610.3 nm. Lithium vapor with a density of 8×1016 cm?3 was ionized by a focused beam with as little as 1 mW of single-frequency laser power. The ionization mechanism has been studied and found to consist of a three stage process in which both atomic and molecular absorption of the laser power, two distinct collisional processes, and single-photon ionization of excited lithium atoms all play essential roles.  相似文献   

14.
MULTIPLE CHROMOPHORE SPECIES IN PHYTOCHROME*,†,‡   总被引:2,自引:0,他引:2  
Abstract— Buffered aqueous solutions of pure phytochrome, when irradiated at 730 nm, had a main absorption band at about 660 nm and a shoulder or secondary band at 580–600 nm. When irradiated at 660 nm, these absorption bands bleached and a pair of bands at 670 and 725–730 nm appeared. When 660 nm irradiated samples were placed in the dark the 730 nm absorption slowly bleached and the 670 nm absorption band shifted to 660 nm. The kinetics of the bleaching indicated that two populations of PFR existed initially. These two populations decayed by first order kinetics with k's of 4.8 × 10-4 sec-1 and 3.1 × 10--5 sec-1at 25°. While the bleaching of PFR was occumng, the appearance of the 660 nm and 580–600 nm absorption bands characteristic of PR took place. The kinetics of the increase in the 580 and 660 nm absorption bands indicated that it was arising from two populations of reactants by two first order reactions with k's of 6.4 × 10-4 sec-1 and 3.1 × 10-5sec-1 at 25°. When the sodium chloride concentration of the solvent was changed the proportions of the kinetically different populations were altered. In some conditions, especially in the presence of air. reversible but non-reciprocal changes in the four absorption bands were observed. These effects were evident after the lapse of many hours in the dark. When native phytochrome was treated with sodium dodecyl sulfate all absorption bands but the 580–600 nm absorption band were bleached and photoreversibility was lost. When native phytochrome was treated with glutaraldehyde, the 730 nm absorption band was bleached but photoreversibility was retained. It was concluded that at least four species of chromophore exist in phytochrome with absorption maxima at 580, 660 , 670 and 730 nm. Each chromophore is capable of being bleached by appropriate irradiation or in the dark by chemical reactions rather than photochemical reactions. The reactions are probably coupled redox reactions between the 580–660 nm pair and the 670–730 pair of chromophores. Discrepancies observed in the reciprocity of the absorption changes in these paired bands are probably due to various degrees of uncoupling and secondarily to the redox potential of the solvent when such uncoupling occurs.  相似文献   

15.
Abstract— Photoreversible cyclobutane-type pyrimidine dimers were found in 32P-labeled RN A isolated from intact potato virus X irradiated with 254 nm light. The number of dimers was correlated with the biological infectivity of the ultraviolet-treated virus. Assuming that incorporated 32P is homogeneously distributed in the viral RNA chain, it can be calculated that about 5·7±1·7 dimers are present in each strand of virus per lethal biological hit.  相似文献   

16.
Abstract Laser flash photolysis and pulse radiolysis have led to the characterisation of several shortlived intermediates formed after irradiation of retinoic acid and retinyl acetate in hexane or methanol. For retinoic acid, the triplet state, wavelength maximum 440 nm, extinction coefficient 7.3 × 104 dm3 mol?1 cm?1, decay constant 6.2 × 105 s?1, is formed with a quantum yield of 0.012 for 347 nm excitation. The radical cation, absorption maximum 590 nm, extinction coefficient ~7 × 104 dm3mol?1 cm?1, is formed in a biphotonic process. The radical anion, absorption maximum 510nm in hexane, 480 nm in methanol where its extinction coefficient is 1.2 × 105 dm3mol?1 cm?1, appears to decay partially in methanol into another longer-lived neutral radical, wavelength maximum 420 nm, by loss of OH?. For retinyl acetate, the triplet state, absorption maximum 395 nm, extinction coefficient 7.9 × 104dm3mol?1 cm?1, decay constant 1.2 × 106s?1 is formed with a quantum yield of 0.025 for 347 nm excitation. Monophotonic photoelimination of OCOCH3? in methanol produces the retinylic carbenium ion, wavelength maximum 590 nm, whose decay is enhanced by ammonia, k ~ 2 × 106 dm3 mol?1 s?1 and retarded by water. The radical cation also has a wavelength maximum at 590 nm, its extinction coefficient being ~ 1.0 × 105 dm3mol1 cm?1. The long-lived transient absorption with maximum at 385 nm, extinction coefficient 1.0 × 105 dm3mol?1 cm?1, obtained from the reaction of the solvated electron with retinyl acetate in methanol may be due to either the radical anion itself or more likely the radical resulting from elimination of OCOCH3? from this anion. These results suggest that skin photosensitivity caused by retinyl acetate might be greater than that due to retinoic acid.  相似文献   

17.
 A new kinetic spectrophotometric method for the determination of hydrazine is described. The method is based on the inhibitory effect of hydrazine on the reaction of neutral red with nitrite in acidic media and 28 °C. A product from the reaction of neutral red with nitrite was used to monitor the reaction spectrophotometrically at 352 nm. Hydrazine can be determined in the range 4.7×10−6∼3.1×10−5mol/L with a detection limit of 3.1×10−6mol/L. The method was applied to the determination of hydrazine in water samples. Received July 23, 1999. Revision January 10, 2000.  相似文献   

18.
Reactions of the hydroxyl radical with several linear hydrocarbon species occurring in combustion chemistry have been considered at temperatures near 1100 K and 1 atmosphere in shock tube experiments. The OH density was monitored using 310 nm UV absorption of the A2Σ+ (SINGLEBOND) X 2Π transition. Rate coefficients for the reaction of OH with ethane (8.37 × 10−12 cm3 molecule−1 s− 1; 970 K), hexane (2.18 × 10−11; 962 K), heptane (3.34 × 10−11, 1186 K), octane (4.42 × 10−11; 1078 K), nonane (4.55 × 10−11; 1097 K), and decane (5.64 × 10−11; 1109 K) have been determined. These values are compared with previous experimental results and transition state theory calculations. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Abstract— A pigment that absorbs yellow light (580 nm) appears in a cell-free preparation of Protosiphon when it is irradiated with blue light (430 nm) in the presence of flavoprotein from Photosiphon or flavin nucleotides. The pigment has been isolated and purified. It is a protein with a molecular weight of approximately 9000 daltons. An amino acid analysis reveals that it lacks arginine and tryptophan. It is colorless when reduced and blue (absorbs at 580 nm) when oxidized. Its normal oxidation–reduction potential is + 0.37 V. It contains one copper ion per molecule and has other properties that match those of plastocyanin isolated from green cells of other species.  相似文献   

20.
In the pH 7.4 Na2HPO4‐NaH2PO4 buffer solution, the cationic surfactant (CS) interacted with nanogold particles (NG) to form NG aggregations (NGA) that resulted in its color changing from wine red to blue‐violet. NG has a strong catalysis on the formic acid‐phosphomolybdic acid (PMo) colored reaction, but that of the NGA catalysis is weak. With the increase of CS concentration, the NGA increased and the NG decreased, the catalysis decreased and the absorption value at 700 nm decreased linearly. The concentrations of 6.25–250 nmol/L tetradecyl dimethyl benzyl ammonium chloride (TDBAC), 0.625–250 nmol/L cetyltrimethyl ammonium bromide (CTMAB) and 12.5–500 nmol·L?1 dodecyldimethylbenzyl ammonium chloride (DDBAC) had good linear responses to the decreased absorption value (ΔA700 nm), with molar absorption coefficients of 2.2×106, 2.1×106 and 9×105 L·mol?1·cm?1 respectively. This method was simple, highly sensitive and low‐cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号