首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we devise a simple way to explicitly construct the Riemann theta function periodic wave solution of the nonlinear partial differential equation. The resulting theory is applied to the Hirota–Satsuma shallow water wave equation. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function. We obtain the one‐periodic and two‐periodic wave solutions of the equation. The relations between the periodic wave solutions and soliton solutions are rigorously established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
中立型泛函微分方程周期解问题   总被引:1,自引:0,他引:1  
利用Fourier级数理论研究了一类k-阶线性中立型泛函微分方程周期解问题,给出了周期解存在唯一性的充要条件。利用此结果并结合Schauder不动点原理,进一步研究了一类k-阶非线性中立型泛函微分方程,得到了存在周期解的新的结果。这些结果改进和推广了近期文献中的已有结论。  相似文献   

3.
A theorem on the estimation of the periodic solutions of a linear integrodifferential equation and a theorem of existence and uniqueness of the periodic solution of a nonlinear integrodifferential equation are presented without proof.  相似文献   

4.
利用函数的遍历性和耗散型条件,研究一类非线性微分方程渐近概周期解的存在性.在某些特定的条件下,得到了这类方程渐近概周期解存在性和唯一性结论.从而得到的结果在一定程度上推广和改进了相关结果.  相似文献   

5.
We consider a structural acoustic wave equation with nonlinear acoustic boundary conditions. This is a coupled system of second and first order in time partial differential equations, with boundary conditions on the interface. We prove wellposedness in the Hadamard sense for strong and weak solutions. The main tool used in the proof is the theory of nonlinear semigroups. We present the system of partial differential equations as a suitable Cauchy problem . Though the operator A is not maximally dissipative we are able to show that it is a translate of a maximally dissipative operator. The obtained semigroup solution is shown to satisfy a suitable variational equality, thus giving weak solutions to the system of PDEs. The results obtained (i) dispel the notion that the model does not generate semigroup solutions, (ii) provide treatment of nonlinear models, and (iii) provide existence of a correct state space which is invariant under the flow-thus showing that physical model under consideration is a dynamical system. The latter is obtained by eliminating compatibility conditions which have been assumed in previous work (on the linear case).  相似文献   

6.
We study conditions for the existence of a solution of a periodic problem for a model nonlinear equation in the spatially multidimensional case and consider various types of large time asymptotics (exponential and oscillating) for such solutions. The generalized Kolmogorov-Petrovskii-Piskunov equation, the nonlinear Schrödinger equation, and some other partial differential equations are special cases of this equation. We analyze the solution smoothing phenomenon under certain conditions on the linear part of the equation and study the case of nonsmall initial data for a nonlinearity of special form. The leading asymptotic term is presented, and the remainder in the asymptotics of the solution is estimated in a spatially uniform metric.  相似文献   

7.
A new analytic approach for solving nonlinear ordinary differential equations with initial conditions is proposed. First, the homotopy analysis method is used to transform a nonlinear differential equation into a system of linear differential equations; then, the Laplace transform method is applied to solve the resulting linear initial value problems; finally, the solutions to the linear initial value problems are employed to form a convergent series solution to the given problem. The main advantage of the new approach is that it provides an effective way to solve the higher order deformation equations arising in the homotopy analysis method.  相似文献   

8.
9.
In this paper, we predict the accurate bifurcating periodic solution for a general class of first-order nonlinear delay differential equation with reflectional symmetry by constructing an approximate technique, named residue harmonic balance. This technique combines the features of the homotopy concept with harmonic balance which leads to easy computation and gives accurate prediction on the periodic solution to the desired accuracy. The zeroth-order solution using just one Fourier term is applied by solving a set of nonlinear algebraic equations containing the delay term. The unbalanced residues due to Fourier truncation are considered iteratively by solving linear equations to improve the accuracy and increase the number of Fourier terms of the solutions successively. It is shown that the solutions are valid for a wide range of variation of the parameters by two examples. The second-order approximations of the periodic solutions are found to be in excellent agreement with those obtained by direct numerical integration. Moreover, the residue harmonic balance method works not only in determining the amplitude but also the frequency of the bifurcating periodic solution. The method can be easily extended to other delay differential equations.  相似文献   

10.

Fixed point theory is used to investigate nonlinear discrete Volterra equations that are perturbed versions of linear equations. Sufficient conditions are established (i) to ensure that stability (in a sense that is defined) of the solutions of the linear equation implies a corresponding stability of the zero solution of the nonlinear equation and (ii) to ensure the existence of asymptotically periodic solutions.  相似文献   

11.
Owing to the importance of differential equations in physics, the existence of solutions for differential equations has been paid much attention. In this paper, the existence of solution are obtained for the nonlinear second order two-point boundary value problem in the reproducing kernel space. Under certain assumptions on right-hand side, we propose constructive proof for the existence result, and a method is presented to obtain the exact solution expressed by the form of series. This paper is a extension of previous paper [Wei Jiang, Minggen Cui, The exact solution and stability analysis for integral equation of third or first kind with singular kernel, Appl. Math. Comput. 202 (2) (2008) 666-674], which extends a method of solving linear problems to present method for solving nonlinear problems.  相似文献   

12.
We study the existence of periodic solutions for a nonlinear fourth order ordinary differential equation. Under suitable conditions we prove the existence of at least one solution of the problem applying coincidence degree theory and the method of upper and lower solutions.  相似文献   

13.
We study the existence and branching patterns of wave trains in a two-dimensional lattice with linear and nonlinear coupling between nearest particles and a nonlinear substrate potential. The wave train equation of the corresponding discrete nonlinear equation is formulated as an advanced-delay differential equation which is reduced by a Lyapunov–Schmidt reduction to a finite-dimensional bifurcation equation with certain symmetries and an inherited Hamiltonian structure. By means of invariant theory and singularity theory, we obtain the small amplitude solutions in the Hamiltonian system near equilibria in non-resonance and p:qp:q resonance, respectively. We show the impact of the direction θ of propagation and obtain the existence and branching patterns of wave trains in a one-dimensional lattice by investigating the existence of traveling waves of the original two-dimensional lattice in the direction θ of propagation satisfying tan θ is rational.  相似文献   

14.
In this paper, a class of systems of matrix nonlinear differential equations containing as particular cases the systems of coupled Riccati differential equations arising in connection with control of some linear stochastic systems is considered.The system of differential equations considered in this paper are converted in a suitable nonlinear differential equation on a finite-dimensional Hilbert space adequately choosen.This allows us to use the positivity properties of the linear evolution operator defined by the linear differential equations of Lyapunov type.Our aim is to investigate properties of stabilizing and bounded solutions of the considered differential equations and to obtain some conditions ensuring the existence of such solutions.Conditions providing the existence of a maximal solution (minimal solution respectively) with respect to some classes of global solutions are presented. It is shown that if the coefficients of the equations are periodic functions all these special solutions (stabilizing, maximal, minimal) are periodic functions, too.Whenever possible the probabilistic arguments were avoided and so the results proved in the paper appear as results in the field of differential equations with interest in themselves.  相似文献   

15.
The existence and multiplicity of non-collision periodic solutions for second order singular dynamical systems are discussed in this paper. Using the Green’s function of linear differential equation, we consider general singularity and do not need any kind of strong force condition. The proof relies on a nonlinear alternative principle of Leray–Schauder and a fixed point theorem in cones.  相似文献   

16.
Using the theory of existence of periodic solutions of Hamiltonian systems, it is shown that many periodic solutions of differential delay equations can be yielded from many families of periodic solutions of the coupled generalized Hamiltonian systems. Some sufficient conditions on the existence of periodic solutions of differential delay equations are obtained. As a corollary of our results, the conjecture of Kaplan-Yorke on the search for periodic solutions for certain special classes of scalar differential delay equations is shown to be true when . Project supported by the National Natural Science Foundation of China (Grant No. 19731003) and Science Foundation of Yunnan Province.  相似文献   

17.
Based on homotopy, which is a basic concept in topology, a general analytic method (namely the homotopy analysis method) is proposed to obtain series solutions of nonlinear differential equations. Different from perturbation techniques, this approach is independent of small/large physical parameters. Besides, different from all previous analytic methods, it provides us with a simple way to adjust and control the convergence of solution series. Especially, it provides us with great freedom to replace a nonlinear differential equation of order n into an infinite number of linear differential equations of order k , where the order k is even unnecessary to be equal to the order n . In this paper, a nonlinear oscillation problem is used as example to describe the basic ideas of the homotopy analysis method. We illustrate that the second-order nonlinear oscillation equation can be replaced by an infinite number of (2κ)th-order linear differential equations, where κ≥ 1 can be any a positive integer. Then, the homotopy analysis method is further applied to solve a high-dimensional nonlinear differential equation with strong nonlinearity, i.e., the Gelfand equation. We illustrate that the second-order two or three-dimensional nonlinear Gelfand equation can be replaced by an infinite number of the fourth or sixth-order linear differential equations, respectively. In this way, it might be greatly simplified to solve some nonlinear problems, as illustrated in this paper. All of our series solutions agree well with numerical results. This paper illustrates that we might have much larger freedom and flexibility to solve nonlinear problems than we thought traditionally. It may keep us an open mind when solving nonlinear problems, and might bring forward some new and interesting mathematical problems to study.  相似文献   

18.
We prove the existence of periodic solutions of the nonlinear wave equation satisfying either Dirichlet or periodic boundary conditions on the interval [O, π]. The coefficients of the eigenfunction expansion of this equation satisfy a nonlinear functional equation. Using a version of Newton's method, we show that this equation has solutions provided the nonlinearity g(x, u) satisfies certain generic conditions of nonresonance and genuine nonlinearity. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Positive solutions of the nonlinear second-order differential equation $(p(t)|x'|^{\alpha - 1} x')' + q(t)|x|^{\beta - 1} x = 0,\alpha > \beta > 0,$ are studied under the assumption that p, q are generalized regularly varying functions. An application of the theory of regular variation gives the possibility of obtaining necessary and sufficient conditions for existence of three possible types of intermediate solutions, together with the precise information about asymptotic behavior at infinity of all solutions belonging to each type of solution classes.  相似文献   

20.
The concepts of accretive and differentiable operator in a Banach space B are used to show that certain approximations to a solution of a nonlinear evolution equation converge. When B is a space of continuous functions it is shown that the approximations and the solution be represented as integrals with respect to a signed measure on a function space. As an example, a new proof is given for the existence and uniqueness of solutions to a nonlinear parabolic differential equations with coefficients dependent upon solutions. Integral representations of these solutions follow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号