Ionic clathrate hydrates are known to be formed by the enclathration of hydrophobic cations or anions into confined cages and the incorporation of counterions into the water framework. As the ionic clathrate hydrates are considered for their potential applicability in various fields, including those that involve solid electrolytes, gas separation, and gas storage, numerous studies of the ionic clathrate hydrates have been reported. This review concentrates on the physicochemical properties of the ionic clathrate hydrates and the notable characteristics of these materials regarding their potential application are addressed. 相似文献
Clathrate formation was considered for two series of systems: (C4H9)4NG–H2O and iC5H11)4NG–H2O G = F-, Cl-, Br-, I-). Clathrate hydrates of tetraisoamylammonium halides were shown to melt at higher temperatures than those of the butyl series. In passing from fluoride to bromide, the stability of compounds of the butyl series falls significantly and tetrabutylammonium iodide does not produce polyhydrates. In the isoamyl series, the melting points of polyhydrates vary insignificantly for different halides. In addition, the highest melting hydrate of tetraisoamylammonium bromide melts at a slightly higher temperature than chloride hydrates, indicating not only a hydrophilic effect of the anion on clathrate formation. 相似文献
Two clathrate hydrates i-Pent4NI·36H2O and i-Pent4NI·32H2O were revealed in the system (i-Pent)4NI-H2O. The hydrates melt incongruently at 14.2 and 14.8°C, respectively. Along with the polyhydrates, tetraisopentylammonium dihydrate was found. 相似文献
The mechanism by which safranine O (SFO), an ice growth inhibitor, halts the growth of single crystal tetrahydrofuran (THF) clathrate hydrates was explored using microfluidics coupled with cold stages and fluorescence microscopy. THF hydrates grown in SFO solutions exhibited morphology changes and were shaped as truncated octahedrons or hexagons. Fluorescence microscopy and microfluidics demonstrated that SFO binds to the surface of THF hydrates on specific crystal planes. Cryo-TEM experiments of aqueous solutions containing millimolar concentrations of SFO exhibited the formation of bilayered lamellae with an average thickness of 4.2±0.2 nm covering several μm2. Altogether, these results indicate that SFO forms supramolecular lamellae in solution, which might bind to the surface of the hydrate and inhibit further growth. As an ice and hydrate inhibitor, SFO may bind to the surface of these crystals via ordered water molecules near its amine and methyl groups, similar to some antifreeze proteins. 相似文献
The pressure dependence (0.4 Mpa–1.3 GPa) of the hydrate decomposition temperatures in the sulfur hexafluoride-water system has been studied. In addition to the known low-pressure hydrate SF617H2O of Cubic Structure II, two new high-pressure hydrates have been found. X-ray analysis in situ showed the gas hydrate forming in the sulfur hexafluoride-water system above 50 MPa at room temperature to be of Cubic Structure I. The ability of water to form hydrates whose structures depend on the guest molecule size under normal conditions and at high pressures is discussed. 相似文献
In this work, the electronic, structural, dynamic andthermodynamic properties of structure II, H and tetragonalAr clathrate hydrates have been calculated and the effectof multiple occupancy on their stability has been examinedusing first-principles and lattice dynamics calculations.The dynamic properties of these clathrates have beeninvestigated depending on the number of guest moleculesin a clathrate cage. It has been found that selectedhydrate structures are dynamically stable. The calculatedcell parameters are in agreement with experimental data.We also report the results of a systematic investigationof cage-like water structures using first-principles calculations. Ithas been observed that Ar clusters can be stabilized indifferent water cages and the stability is strongly dependenton the number of argon atoms inside the cages. 相似文献
In the system tetrabutylammonium adipate-water, two stable and two metastable polyhydrates were identified. The melting points of the polyhydrates were correlated with the anion hydrocarbon chain length in the series H2O-[(C4H9)4N]2(CH2)nC2O4 (n = 0-8). 相似文献
Molecular dynamics simulations of the structure H (sH) clathrate of tert‐butylmethylether show the prevalence of ether–water hydrogen bonding (see picture), absent in the neo‐hexane sH clathrate. This affects guest–cage dynamics and host–water dielectric relaxation dynamics. The 13C and 1H NMR relaxation times for both guests are measured, and the differences are explained in terms of guest–host interactions in the two clathrates.
We investigated for the first time the abnormal thermal expansion induced by an asymmetric guest structure using high‐resolution neutron powder diffraction. Three dihydrogen molecules (H2, D2, and HD) were tested to explore the guest dynamics and thermal behavior of hydrogen‐doped clathrate hydrates. We confirmed the restricted spatial distribution and doughnut‐like motion of the HD guest in the center of anisotropic sII‐S (sII‐S=small cages of structure II hydrates). However, we failed to observe a mass‐dependent relationship when comparing D2 with HD. The use of asymmetric guest molecules can significantly contribute to tuning the cage dimension and thus can improve the stable inclusion of small gaseous molecules in confined cages. 相似文献
Molecular dynamics (MD) simulations of structure II clathrate hydrates are performed under canonical (NVT) and isobaric–isothermal
(NPT) ensembles. The guest molecule as a small help gas is xenon and gases such as cyclopropane, isobutane and propane are
used as large hydrocarbon guest molecule (LHGM). The dynamics of structure II clathrate hydrate is considered in two cases:
empty small cages and small cages containing xenon. Therefore, the MD results for structure II clathrate hydrates of LHGM
and LHGM + Xe are obtained to clarify the effects of guest molecules on host lattice structure. To understand the characteristic
configurations of structure II clathrate hydrate the radial distribution functions (RDFs) are calculated for the studied hydrate
system. The obtained results indicate the significance of interactions of the guest molecules on stabilizing the hydrate host
lattice and these results is consistent with most previous experimental and theoretical investigations. 相似文献
To understand host–guest interactions of hydrocarbon clathrate hydrates, we investigated the crystal structure of simple and binary clathrate hydrates including butane (n‐C4H10 or iso‐C4H10) as the guest. Powder X‐ray diffraction (PXRD) analysis using the information on the conformation of C4H10 molecules obtained by molecular dynamics (MD) simulations was performed. It was shown that the guest n‐C4H10 molecule tends to change to the gauche conformation within host water cages. Any distortion of the large 51264 cage and empty 512 cage for the simple iso‐C4H10 hydrate was not detected, and it was revealed that dynamic disorder of iso‐C4H10 and gauche‐nC4H10 were spherically extended within the large 51264 cages. It was indicated that structural isomers of hydrocarbon molecules with different van der Waals diameters are enclathrated within water cages in the same way owing to conformational change and dynamic disorder of the molecules. Furthermore, these results show that the method reported herein is applicable to structure analysis of other host–guest materials including guest molecules that could change molecular conformations. 相似文献
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates. 相似文献
Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade‐offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid‐solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in P–T space as a function of the concentration of THF. In situ high‐pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and 13C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas–liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas–solid reaction do not agree nearly as well. 相似文献
Abstract The reaction of dicyclohexylamine (DCHA) with thiourea leads to the formation of the inclusion compound DCHA(6 Thiourea). Room temperature, single crystal X-ray diffraction analysis shows the product has a trigonal structure, α=β=90°, γ=120°, a=b=15.801(2)A, c=12.451(3)A, which may be described as a thiourea matrix defining hexagonal cavities where the di-cyclohexylamine molecules are accommodated. 13C-cross polarization magic angle spinning (CP-MAS) NMR study indicates the guest inside the cavities has a relatively free rotation and that the channels are, concerning this amine, perfect van der Waals cavities. Thermal studies indicates that the structural identity of the thiourea matrix endures after a partial loss of amine. 相似文献
The minimal occupancy level (θmin) of the clathrate lattice of gas molecules is defined as the number of guest molecules in the host clathrate lattice, which can stabilize the thermodynamically unstable empty cage by covering the energy demand of the transformation of hexagonal ice into empty clathrate lattice (ΔHtrans). The θmin values for chlorine hydrate were determined from the n = f(p)T=const. relationship and the average molar intercalation heat of chlorine in the type I clathrate lattice was also calculated for both type of cavities. 相似文献
The phase diagram of the (i-C5H11)3C4H9NI?H2O system is reported. Triisoamylbutylammonium iodide forms polyhydrates with hydration numbers of 36 (mp 12.5°C) and 32 (mp 13.2°C) and a dihydrate. Crystals of both polyhdrates have been isolated, and their compositions have been determined. 相似文献